NUMERICAL APPROXIMATION OF THE DERIVATIVE NONLINEAR SCHRODINGER EQUATION
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The solution to an initial- and Dirichlet boundary-value prob-
lem of the Derivative Nonlinear Schrédinger (DNLS) equation
iIs approximated by Crank-Nicolson finite difference (FDM)
method that conserves the discrete L? norm. We provide an
optimal second order error estimate in the discrete L? norm,

. 2 . :
assuming k, h and % are sufficiently small, where £ is the
time step and £ is the space mesh size.

The DNLS equation

For T > 0, 2 = |v,6] and Q@ = [0,7T] x Q. We seek
¢ : () — C solving the following initial - and Dirichlet bound-

ary - value problem for the derivative non-linear Schrodinger
(DNLS) equation:

bt =iader+p(|6]°0) + f, (0,7 x [7,6],
d(t,7) = ¢(t,0) =0, te€0,T] (1)
$(0,2) = ¢p(z), =« € [7,d].

Here, 7 is the imaginary unit, « and p are non-zero real con-
stants, ¢g : Q — C with ¢g(v) = ¢p(d) =0and f: Q — C.

The Finite Difference Method

(FDM)

Forn = 0, ..., N approximate the vector ¢" & CCO‘”Q with vec-

tor " € C; ™ defined by
Step 1: Set

P = ¢,
Step 2: Forn =0, ..., N — 1, find "t ¢ C({+2 such that

1 1 1
OLO" = ja AT 4 §£(<I>”+?) b s, 2)

where L : CO‘”Q o CO‘”Q Is the non-linear discrete operator
defined by

L(v) = ﬁh(\v|2 QR v) + 8h(|v\2) R v+ \v|2 ® O,

1 1
and "2 € CJ*2 with ff*? = f(t _1,xj)forj=1,..J.
2

Proposition 1 (Existence) For any given ®V ¢ CO‘] +2 there

exist finite difference approximations (d") 7]1\[:1 C COJ 2

Proposition 2 (Uniqueness) Let M > 0 be a constant. Then,
there exists a constant Cr9 > 0, independent of k and h, such
that: if CiroM 2k < 1 and there are (FDM) approximations
(@MN_y © CJ*? satistying maxp<yn<n |0 con < M,
then they are unique.
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Consistency

Form = 0,..., N — 1, the consistency error R"" € (Cb]+2 of the

(FDM) method at the time level ¢t = t, .1 is defined by
2

m - m+l P m+l m+l m
OL.¢"" = 1alp,¢ 2—|-§£ o2+ 24+ R

Proposition 3 (Consistency error) Let ¢ be the solution to
the problem (1).If ¢ € Off(@) and 0,¢,02¢ € Of;?(@), then
it holds that
R™||oo < Ces(h® + k2),
Ognr?g]%f—l | oo < Ces( )
where C.s is a positive constant independent of k and h, and
depends on ¢ and the derivatives of ¢.

Convergence

For A > 0, let &, : [0,+00] — |0, 1] be a continuous function
defined by

Lif x <A
Sz) =4 BZifre (N2, VzeR,
0if z > 2\

Then, for A > 0 and ¢t € [0, T], we define an operator m)(¢; ) :
(COJ—I—Q N Cb]—l—Q by

my (t;w) = wy ([Jw — Ap(o(t,)ll1.00.n)
+ Ap(o(t, ) [T = &x (lw = Ap(o(t, NDioon)] s

Yw € CJ 12,

where ¢ Is the solution to the problem (1).

For A > 0, we introduce a modified finite difference scheme
following the steps below:

Step 1: Set

Sg)\ = ¢,
Step2: Forn=0,..., N — 1, find SQJH € <C(37+2 such that

1 1
: n+s P n+s 1
0k5§:zaAhSA 2-|—§£)\(tn+%;s>\ 2)—I—fn+2.

where
2 2
L(t;v) = O (|mp(t;0)]° @ v) + O (Imp(t0)|7) @ v
+ |m)\(t; v)\Q ® .
Proposition4 Let A\ > \j.Then, there exists constant

Cvex > 0, independent of k,h and X\, such that:f
ENChpx < 1, then the for any Sg € C({ T2 there exist modi-

fied finite difference approximations (SY") %:1 C CCOJ +2

Theorem 1 (Error estimation) Let ¢ € Cf’f(@), with

00, 8%gb S szg (@), be the solution to the problem (1).
Also let A\, = 1+ \g. Then, there exists a positive con-
stant Cypy ¢, such that if Cygoyi Ak® < 1.and (S7 ),
be modified finite difference approximations, then

max |[¢" — ST |, < C k2 + h?
OSnSNHqﬁ VUl < Cureval )

max |¢"" — SV <C E+h
O§n§N|¢ e < Cyeovalk +h)

where C;ovo and Croyy3 positive constants indepen-
dent of k and h.

In the following Theorem we establish that, under a mild
condition, the modified approximations are (FDM) approx-
Imation and hence they share the same properties.

Theorem 2 Let us assume that ¢ ¢ Off(@) and
Gz, Pzz € Ci}f(@). Also, let \x, = 1 + Mg,

N
(S”j) ; be modified finite difference approximations
* ) n—

and Cyyovi A2k < 1. Then, there exists positive con-
stants Coc1 2 Cuyrovy and Cacoo, independent of k and

h, such that: if Coan 2k < 1 and Coen(k2 + kh™2 +

h%) < )Ax, then the modified finite difference approxi-
N

mations (SQJ ) ; are unique, bounded in the discrete
* ) n—

W1 norm and they are (FDM) approximations, i.e. for
o = ng*, n=20,...,N (2) holds.

Numerical Results

We consider the problem (1) with 7" = 5, [, §] = [—20, 20],
a=1,p=—1, f =0 and the single soliton solution (see,

e.g., [8])

U(SIZ’, t) — . 7€
<_1+(ﬁ +%) 6t/5—2x+2)
v Eoo(v,v) Rate | Fj(v,v) | Rate max [0 o
1000 | 1.73496e-01 — 6.4106e-01 — 3.1747

2000 [4.35346e-02 1.9947|1.6093e-01/1.9940| 3.1807

4000 | 1.08835e-02 2.0000|4.0239e-02|1.9997| 3.1819

8000 [2.72295e-03 1.9989|1.0066e-02 1.9991| 3.1822

16000 | 6.79854e-04 2.0019 2.5141e-03 2.0013 3.1823

32000 1.69554e-04 2.0035 6.2715e-04 12.0031| 3.1823
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