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Abstract

This work is devoted to Thimm’s method for proving inte-
grability of Hamiltonian systems, such as geodesic flows of
Riemannian manifold. Thimm’s work allows the construc-
tion of families of first integrals in involution for Hamilto-
nian systems which are invariant under the Hamiltonian ac-
tion of a Lie group G. This is applied to invariant Hamil-
tonian systems on the tangent bundles of certain homoge-
neous spaces. In particular, we show the integrability of the
geodesic flows of real Grassmannian manifold.

1. Hamiltonian systems

Let (M,ω) be a symplectic 2n-manifold. A smooth vector
field X on M is called Hamiltonian if there exists a smooth
function H :M → R such that iXω = dH. In other words,

ωp(Xp, vp) = vp(H)

for every vp ∈ TpM and p ∈ M . We usally write X = XH .
Since LXω = d(iXω) = 0, the flow of XH consists of sym-
plectomorphisms.

Definition. If (M,ω) is a symplectic manifold and F, G ∈
C∞(M), then the smooth function

{F,G} = iXG
iXF

ω ∈ C∞(M)

is called the Poisson bracket of F and G.

Proposition. A smooth function F : M → R on a symplec-
tic manifold M is a first integral of a Hamiltonian vector field
XH on M if and only if {F,H} = 0.

2. Hamiltonian Lie group action

Definition. Let (M,ω) be a symplectic manifold and G a
Lie group. A smooth group action φ : G×M →M is called
symplectic if φg = φ(g, ·) :M →M is a symplectomorphism
for every g ∈ G. The symplectic action is called Hamiltonian
if each fundamental vector field φ∗(X), X ∈ g, is Hamilto-
nian. The action is called Poisson if there is a Lie algebra
homomorphism ρ : g→ C∞(M) such that φ∗(X) = Xρ(X).

Definition. Let (M,ω) be a connected, symplectic manifold,
G a Lie group with Lie algebra g. A momentum map for a
Poisson action φ is a smooth map µ : M → g∗ such that
ρ : g→ C∞(M) defined by ρ(X)(p) = µ(p)(X) for X ∈ g and
p ∈M satisfies

(i) φ∗(X) = Xρ(X),
(ii){ρ(X), ρ(Y )} = ρ([X, Y ]) for every X, Y ∈ g.

3. Completely integrable Hamiltonian systems

Let (M,ω) be a connected, symplectic 2n-manifold and
H1 ∈ C∞(M). The Hamiltonian vector field XH1

is called
completely integrable if there are H2, ..., Hn ∈ C∞(M) such
that {Hi, Hj} = 0 for every 1 ≤ i, j ≤ n and the differen-
tial 1-forms dH1, dH2, ..., dHn are linearly independent on a
dense open set D ⊂M.

4. Symplectic geometry on T (G/K)

Let K be a closed subgroup of a connected Lie group G
and the set {σK | σ ∈ K} of left cosets be the homoge-
neous space M := G/K. Let also π : G→ G/K denote the
natural projection π(σ) = σK. We consider homogeneous
spaces that posses the following property.

Property A. On the Lie algebra g of G there exists an AdG-
invariant, symmetric, non-degenerate billinear form B such
that the restriction of B to the Lie algebra k of K is non-
degenerate.

This property leads to the existence of m, the B-
complement of k in g. Bk×k defines a G-invariant metric
on M . We Identify g∗ with g using B and T ∗M with TM by
means of the invariant metric defined by B.

We derive a formula for the momentum map P on TM of a
homogeneous space assuming it satisfies property (A).

Lemma. Let M=G/K be a homogeneous space satisfy-
ing property (A). Then the momentum map P : TM → g
is given by P (gξ) = Adgξ, where g ∈ G, ξ ∈ m, gξ =
(Lg)∗π(e) ◦ π∗e(ξ) ∈ Tπ(g)M .

5. The symplectic structure of the tangent bundle
of homogeneous spaces

Proposition. Let M=G/K be a homogeneous space satisfy-
ing property (A). Identifying TξTM , ξ ∈ m, by means of the
exponential map with the subspace

{(v1 −
1

2
[v1, ξ] + w)(e,ξ) | v, w ∈ m}

of G × g × g × g, then the symplectic structure of TM ∈ gξ
is given by

ωgξ(g∗ξ(v1,−1
2[v1, ξ]+w1), g∗ξ(v2,−1

2[v2, ξ]+w2)) = B(v1, w2)−
B(v2, w1).

6. Hamiltonian systems on the tangent bundle of
homogeneous spaces

Proposition. Let h : m → R be AdK-invariant and f :
TM → R the G-invariant Hamiltonian defined by h. The
Hamiltonian vector field Xf of f is given by the formula

Xf (gξ) = g∗ξ(v1,−
1

2
[v1, ξ] + w1)

where v1 = gradh(ξ) and w1 = −1
2[gradh(ξ), ξ]m.

If f1, f2 : TM → R are two invariant Hamiltonians defined
by h1, h2 : m→ R respectively, then their Poisson bracket is

{f1, f2}(gξ) = −B([gradh1(ξ), gradh2(ξ)], ξ).

G-invariant Hamiltonian systems on TM have many first
integrals such as all functions f = h ◦ P for some smooth
function h : g → R and P : TM → g the momentum map.
We compute the Hamiltonian vector field of f = h ◦ P .

Proposition. Let M=G/K be a homogeneous space satis-
fying property (A) and h : g → R. Then the Hamiltonian
vector field Xf of f = h ◦ P is given by the formula

Xf (gξ) = g∗ξ(v,−
1

2
[v, ξ] + w)

where v = Adg−1(ζ)m, w = [Adg−1(ζ), ξ]m − 1
2[Adg−1(ζ)m, ξ]m

and ζ = gradh(Adg(ξ)).

7. First integrals in involution from non-degenerate
Lie subalgebras

The Poisson bracket in g∗ transforms to the Poisson bracket
in g defined by

{h1, h2}(ξ) = B(ξ, [gradh1(ξ), gradh2(ξ)])

for ξ ∈ g and h1, h2 ∈ C∞(g), where the gradients are con-
sidered with respect to B. We find that h is AdG-invariant if
and only if [ξ, gradh(ξ)] = 0 for all ξ ∈ g.

Suppose that g′, g′′ ⊂ g are subalgebras of g so that B|g′×g′
and B|g′′×g′′ are non-degenerate. There are B-orthogonal
projections π′ : g → g′ and π′′ : g → g′′. If h′ : g′ → R is an
AdG′-invariant smooth function and h′′ : g′′→ R is an AdG′′-
invariant smooth function, the Poisson bracket of h′ ◦π′ and
h′′ ◦ π′′ is

{h′ ◦ π′, h′′ ◦ π′′}(ξ) = B(ξg′⊥, [gradh
′(π′(ξ)), gradh′′(π′′(ξ)]).

So if [g′, g′′] ⊂ g′, then {h′ ◦ π′, h′′ ◦ π′′} = 0. This holds in
particular if g′′ ⊂ g′.

Lemma. Let (M,ω) be a symplectic manifold with a Pois-
son action of the Lie group G on M . Let µ : M → g∗ be
the corresponding momentum map. If h1, h2 : g∗ → R are
smooth functions, then

{h1 ◦ µ, h2 ◦ µ} = {h1, h2} ◦ µ.

Proposition. Let (M,ω) be a symplectic manifold with
a Poisson action of the Lie group G on M with momen-
tum map µ : M → g∗. Suppose that there exists an
AdG-invariant, non-degenerate, symmetric bilinear form B :
g× g→ R on the Lie algebra g of G. If

g1 ⊂ g2 ⊂ ... ⊂ gk ⊂ gk+1 = g

is a chain of non-degenerate (with respect to B) Lie subal-
gebras of g and hi ∈ C∞(gi), 1 ≤ i ≤ k + 1 and Ad-invariant
functions, then hi ◦ πi ◦ µ, 1 ≤ i ≤ k + 1 are first inte-
grals in involution of XF for every G-invariant Hamiltonian
F : M → R, where πi : g → gi is the B-orthogonal projec-
tion, 1 ≤ i ≤ k + 1 and with respect to the identification of g
and g∗ defined by B.

8. Integrabilty of the geodesic flow of the real
Grassmann manifolds

The real Grassmann manifold of p-planes in Rn+1 is the ho-
mogeneous symmetric space

Gp,q(R) = SO(n + 1,R)/S(O(p,R)×O(q,R))

= O(n + 1,R)/(O(p,R)×O(q,R))

where p+q = n+1, normalized by p ≤ q. The Killing form on
the Lie algebra g = so(n + 1,R) leads to the AdG-invariant
non-degenerate, symmetric, bilinear form on g

B(ξ, η) = −1
2
Tr(ξ · η) = 1

2
Tr(ξηt)

Let K = S(O(p) × O(p)) with corresponding Lie algebra k.
The complement of k in g is

m =

{(
0 X
−Xt 0

)
| X ∈ Rp×q

}
.

On g we consider the polynomial functions fk : g → R,
k = 1, 2, ..., p defined by

fk(ξ) = −
1

4k
Tr(ξ2k)

which are AdG-invariant. In particular their restriction on m
are AdK-invariant.

Proposition. The polynomial functions hk : so(p+q,R)→ R
with

hk(ξ) = Trξ2k, k = 1, 2, ..., p,

where p, q ∈ N, p ≤ q, are SO(p + q,R)-invariant with gradi-
ents

gradhk(ξ) = −2kξ2k−1,

with respect to the metric 〈X, Y 〉 = Tr(XY t). Moreover at
any ξ in a maximal abelian subspace a ⊂ m, their gradients
are tangent to a and are linearly independent if ξ is a regu-
lar element of so(p + q,R).

Now we consider the following chain

R1 × R1 ⊂ R1 × R2 ⊂ R2 × R2 ⊂ ... ⊂ Rp × Rq−1 ⊂ Rp × Rq

of subspaces of Rn+1 = Rp × Rq. From this chain of vector
subspaces we obtain the chain of Lie subgroups

O(1+1,R) ⊂ O(1+2,R) ⊂ ... ⊂ O(p+q−1,R) ⊂ O(n+1,R).

We can obtain a finite sequence of regular vectors ξi ∈ mi
such that πi(ξj) = ξi for i < j where πi : so(n + 1,R)→ gi is
the orthogonal projection.

If P : TGp,q(R)→ so(n+1,R) denotes the representation of
the momentum map induced by the metric, we have a total
number of

2
(p− 1)p

2
+ p(q − p + 1) = pq

first inegrals Fij = fj ◦ πi ◦ P : TGp,q(R) → R which are
in involution. Their gradients are linearly independent at
ξn = ξp+q−1 and so are their corresponding Hamiltonian
vector fields. Since P is real analytic and fj ◦ πi are poly-
nomial functions, all the Fji are real analytic functions and
so their gradients are linearly independent and so are their
corresponding Hamiltonian vector fields.

Theorem. The geodesic flow of the real Grassmanian
Gp,q(R) is completely integrable with pq real analytic func-
tions on TGp,q(R) as a complete family of first integrals in
involution.
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