Integrability of Hamiltonian Systems by Thimm’s Method

‘ Abstract I

This work is devoted to Thimm’s method for proving inte-
grability of Hamiltonian systems, such as geodesic flows of
Riemannian manifold. Thimm’s work allows the construc-
tion of families of first integrals in involution for Hamilto-
nian systems which are invariant under the Hamiltonian ac-
tion of a Lie group GG. This is applied to invariant Hamil-
tonian systems on the tangent bundles of certain homoge-
neous spaces. In particular, we show the integrability of the
geodesic flows of real Grassmannian manifold.

1. Hamiltonian systems |

et (M,w) be a symplectic 2n-manifold. A smooth vector
field X on M is called Hamiltonian if there exists a smooth
function H : M — R such that i yw = dH. In other words,

wp(Xp, vp) = vp(H)

for every v, € T,M and p € M. We usally write X = Xp.
Since Lyw = d(ixw) = 0, the flow of Xz consists of sym-
plectomorphisms.

Definition. If (M,w) is a symplectic manifold and F, G &€
C'>°(M), then the smooth function

{F, G} = iXGiXFw S COO(M)

IS called the Poisson bracket of F' and G.

Proposition. A smooth function F' : M — R on a symplec-
tic manifold M s a first integral of a Hamiltonian vector field
XgonM ifandonlyif{F,H} = 0.

‘ 2. Hamiltonian Lie group action |

Definition. Let (M,w) be a symplectic manifold and G a
Lie group. A smooth group action ¢ : G x M — M is called
symplectic if o4 = ¢(g,-) : M — M is a symplectomorphism
for every g € GG. The symplectic action is called Hamiltonian
if each fundamental vector field ¢«(X), X € g, is Hamilto-
nian. The action is called Poisson if there is a Lie algebra
homomorphism p : g — C°°(M) such that ¢«(X) = X x.

Definition. Let (M, w) be a connected, symplectic manifold,
( a Lie group with Lie algebra g. A momentum map for a
Poisson action ¢ is a smooth map x : M — g* such that
p:g— C°°(M)defined by p(X)(p) = u(p)(X) for X € g and
p € M satisfies

(1) +(X) = X x)s
(i{p(X), p(Y)}

3. Completely integrable Hamiltonian systems |

et (M,w) be a connected, symplectic 2n-manifold and
Hy € C°°(M). The Hamiltonian vector field Xy, is called
completely integrable if there are Ho, ..., H, € C°°(M) such
that {H;, H;} = 0 for every 1 < 4,57 < n and the differen-
tial 1-forms dH,dH>, ..., dH,, are linearly independent on a
dense open set D C M.

p([X,Y]) forevery X, Y € g.

4. Symplectic geometry on 7'(G/K)

_et K be a closed subgroup of a connected Lie group G
and the set {cK | ¢ € K} of left cosets be the homoge-
neous space M = G/K. Letalso 7 : G — G /K denote the
natural projection n(¢c) = o K. We consider homogeneous
spaces that posses the following property.

Property A. On the Lie algebra g of G there exists an Ad;-
Invariant, symmetric, non-degenerate billinear form B such
that the restriction of B to the Lie algebra t of K is non-
degenerate.

This property leads to the existence of m, the B-
complement of ¢ in g. Bpy¢ defines a G-invariant metric
on M. We Identify g* with g using B and T*M with T'M by
means of the invariant metric defined by B.

We derive a formula for the momentum map P on T'M of a
homogeneous space assuming it satisfies property (A).

Lemma. Let M=G/K be a homogeneous space satisfy-
ing property (A). Then the momentum map P : TM — g
Is given by P(g§) = Ady,§, where g ¢ G, £ € m, g§ =
<L9>>|<7r(e) 0 Txe(§) € T7T<g>M'
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5. The symplectic structure of the tangent bundie
of homogeneous spaces

Proposition. Let M=G/K be a homogeneous space satisfy-
ing property (A). Identifying T, T'M, § € m, by means of the
exponential map with the subspace

1

{(v] — 5[?}1,5] +w) e | v,w € m}

of G x g x g X g, then the symplectic structure of TM € ¢g¢
Is given by

wg§(9*§<vlv _%[Ula £]+w1>7 g*g(UQ, _%[U% £]+w2>) — B<U17 w2>_
B(Ug,wl).

6. Hamiltonian systems on the tangent bundle of
homogeneous spaces

Proposition. Let h : m — R be Adg-invariant and f :
TM — R the G-invariant Hamiltonian defined by h. The
Hamiltonian vector field X ¢ of f is given by the formula

X1(96) = guelor, —5lon. § +wn)

where vy = gradh(§) and wy = —%[gradh(é), Elm.
If f1,fo : TM — R are two invariant Hamiltonians defined
by hi, ho : m — R respectively, then their Poisson bracket is

{f1, f2}(g€) = —B([gradhy(§), gradhs(£)], §).

G-invariant Hamiltonian systems on 7'M have many first
integrals such as all functions f = h o P for some smooth
function h : g - Rand P : TM — g the momentum map.
We compute the Hamiltonian vector field of f = h o P.

Proposition. Let M=G/K be a homogeneous space satis-
fying property (A) and h : ¢ — R. Then the Hamiltonian
vector field X ¢ of f = h o P is given by the formula

1

X1(98) = gxelv, —5[% §] + w)

where v = Ad,-1(Q)m, w = [Ad,-1(C), Em — 3[Ad-1(Om, Em
and ¢ = gradh(Ady(€)).

7. First integrals In involution from non-degenerate
Lie subalgebras

The Poisson bracket in g* transforms to the Poisson bracket
in g defined by

{h1, ho}(§) = B(&, [gradhy (&), gradha(&)])

for ¢ € g and hy, hy € C*°(g), where the gradients are con-
sidered with respect to B. We find that & is Adg-invariant if
and only if [¢, gradh(&)] = 0 for all € € g.

Suppose that g’, g" C g are subalgebras of g so that By
and B|q« 4 are non-degenerate. There are B-orthogonal
projections 7’ : g - g and 7"’ : g — ¢". If ' : g’ = Ris an
Ad-invariant smooth function and 2" : g — R is an Adg-
invariant smooth function, the Poisson bracket of 1/ o 7’ and
h' o n'is

(W on', W' o 7"} (€) = B(€ . [gradl (' (€)), gradh” (" (€))).

Soif [¢/,g"] c ¢, then {W on’ " o #’"} = 0. This holds in
particular if g’ C ¢'.

Lemma. Let (M,w) be a symplectic manifold with a Pois-
son action of the Lie group G on M. Letu : M — g* be
the corresponding momentum map. If hi,ho : g* — R are
smooth functions, then

{h1 0w, hgoput={hy,ha}op.

Proposition. Let (M,w) be a symplectic manifold with
a Poisson action of the Lie group G on M with momen-
tum map n : M — g*. Suppose that there exists an
Adg-Invariant, non-degenerate, symmetric bilinear form B :
g x g — R on the Lie algebra g of G. If

g1 C g C...CgrCPry1 =9

IS a chain of non-degenerate (with respect to B) Lie subal-
gebras of g and h; € C*°(g;), 1 <i < k+ 1 and Ad-invariant
functions, then h; o m;onu, 1 < ¢ < k + 1 are first inte-
grals in involution of X for every G-invariant Hamiltonian
F: M — R, where ;- g — g, IS the B-orthogonal projec-
tion, 1 <1 < k+ 1 and with respect to the identification of g
and g* defined by B.

8. Integrabilty of the geodesic flow of the real
Grassmann manifolds

The real Grassmann manifold of p-planes in R**! is the ho-
mogeneous symmetric space

Gpqg(R) = SO(n+1,R)/S(O(p,R) x O(q,R))

=O0(n+1,R)/(O(p,R) x O(¢, R))

where p+q = n+1, normalized by p < ¢. The Killing form on
the Lie algebra g = so(n + 1,R) leads to the Ad-invariant
non-degenerate, symmetric, bilinear form on g

B(&,n) = —%Tr(ﬁ ) = %Tr(fnt)

Let K = S(O(p) x O(p)) with corresponding Lie algebra ¢.
The complement of ¢in g is

0 X
_ Pxq
m—{<_XtO>]X€R }

On g we consider the polynomial functions f;. : g — R,
k=1,2,...,p defined by

1

fo(€) = = Tr(E™)

which are Adg-invariant. In particular their restriction on m
are Adg-invariant.

Proposition. The polynomial functions h;. : so(p+q,R) — R
with
hk(f) — Tré-Qk‘? k — 17 27 "'7p7

where p,q € N, p < q, are SO(p + ¢, R)-invariant with gradi-
ents

gradhy, (&) = —2ke*F 1,

with respect to the metric (X,Y) = Tr(XY?). Moreover at
any & in a maximal abelian subspace a C m, their gradients
are tangent to a and are linearly independent if £ is a requ-
lar element of so(p + q, R).

Now we consider the following chain
RIXRICRIXRPCRZXR2C...cRP xR c RP x RY

of subspaces of R”*! = RP x R?. From this chain of vector
subspaces we obtain the chain of Lie subgroups

O1+1,R)cO1+2,R)C ... C O(p+q—1,R) C O(n+1,R).

We can obtain a finite sequence of regular vectors &, € m;
such that Wz(f]) = ¢, for i < 7 where 7; : 50(n + 1,R) — g; IS
the orthogonal projection.

If P: TG, (R) = so(n+1,R) denotes the representation of

the momentum map induced by the metric, we have a total

number of

(p—1)p
2

2

+p(g—p+1) =pq

first inegrals F;; = fjom o P : TGp4(R) — R which are
In involution. Their gradients are linearly independent at
&n = &p+g—1 and so are their corresponding Hamiltonian
vector fields. Since P is real analytic and f; o m; are poly-
nomial functions, all the F);; are real analytic functions and
so their gradients are linearly independent and so are their
corresponding Hamiltonian vector fields.

Theorem. The geodesic flow of the real Grassmanian
Gp(R) is completely integrable with pq real analytic func-
tions on T'G) 4(R) as a complete family of first integrals in
involution.
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