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HS/HS+ priors yield nearly sparse posterior draws but do not set unwanted 
ARMA coefficients exactly to zero; we enforce true sparsity via a final model 
selection step using Kullback-Leibler divergence between posterior predictive 
distributions—favoring parsimonious submodels with minimal KL to the full 
model.

ARMA Model
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with 𝜶𝒊 = 𝟎 or 𝜷𝒋 = 𝟎 for many 𝒊, 𝒋 ⇒ sparse structure.
Combination of Autoregressive (AR)  & Moving Average (MA) Models 
with (p,q) their finite lag orders.  
Required Properties:
1. Weak Stationarity: constant mean & variance.
2. Invertibility: unique representation of the process.

Bayesian methods offer a different approach to statistical analysis,  
parameters are random variables with prior distributions, updated by 
observed data to yield posterior distributions. This approach incorporates 
prior knowledge and quantifies uncertainty in parameter estimates. 
Frequentist approaches, by comparison, view parameters as fixed unknowns 
and base inference entirely on the data, typically offering point estimates 
without a complete uncertainty distribution. 

Bayesian Framework:

𝒑 𝜽 𝒚 ∝ 𝒑 𝒚 𝜽 𝒑 𝜽 , 𝜽 = 𝝁, 𝜶, 𝜷, 𝝈𝟐

          posterior likelihood prior

Model & Likelihood :
For observations   𝑦 = 𝑦1, … , 𝑦𝑛  ,   

𝑦 ∼ 𝑁𝑛 𝜇 𝟏, Σ 𝜶, 𝜷, 𝜎𝟐

Where Σ = 𝜎2𝐿𝐿⊤ and L is the lower-triangular matrix built from 𝑀𝐴 ∞  
coefficients: 

1 + 𝛽1𝐵 + ⋯ + 𝛽𝑞𝐵𝑞

1 − 𝛼1𝐵 − ⋯ − 𝛼𝑝𝐵𝑝
  = ෍

𝑗=0

∞

𝜓𝑗𝐵𝑗

and B is a backshift operator : 𝐵𝑦𝑡 = 𝑦𝑡−1, 𝐵𝑘𝑦𝑡 = 𝑦𝑡−𝑘.

𝒑 𝒚 𝝁, 𝜶, 𝜷, 𝝈𝟐  = 𝟐𝝅 −𝒏/𝟐 𝚺 −𝟏/𝟐 𝐞𝐱𝐩 −
𝟏

𝟐
𝒚 − 𝝁𝟏 ⊤𝚺−𝟏 𝒚 − 𝝁𝟏

Priors:
• 𝜇 ∼ 𝑁 𝜇0, 𝜎0

2  
• 𝛼 ∼ 𝑁𝑝 0, Σ𝛼

• 𝛽 ∼ 𝑁𝑞 0, Σ𝛽

• 𝜎2 ∼ 𝐼𝑛𝑣−𝐺𝑎𝑚𝑚𝑎 𝑎, 𝑏

Posterior:

𝒑 𝝁, 𝜶, 𝜷, 𝝈𝟐 𝒚 ∝ 𝒑 𝒚 𝝁, 𝜶, 𝜷, 𝝈𝟐 , 𝒑 𝝁 𝒑 𝜶 𝒑 𝜷 𝒑 𝝈𝟐

In practice the innovations 𝜀t  are unobserved.  Under invertibility,  MA(q) 
can be estimated from an AR(∞) representation. We use a two-step Bayesian 
scheme, approximate ෝ𝜀t from data and then sample form the Priors. 

Bayesian Framework

This work investigates sparse ARMA models for time-series data—settings 
where only a few lags matter. Motivated by a paper “Subset ARMA selection 
via the adaptive Lasso” for model selection and shrinkage, we design a 
Bayesian framework with two complementary approaches:
1. global–local shrinkage via Horseshoe/Horseshoe+ priors combined 

with predictive posterior projection, and
2. an INLA-based formulation with predictive posterior projections.
We benchmark these against Auto-ARIMA and ADAM. 
The aim is to compare the models and find which is more efficient finding the 
Data generating Model.

Introduction III: 𝒚𝒕 = 𝟏 + 𝟎. 𝟖𝑩 𝟏 + 𝟎. 𝟕𝑩𝟔 𝝐𝒕 IV: 𝒚𝒕 = 𝟏 − 𝟎. 𝟔𝑩 − 𝟎. 𝟖𝑩𝟏𝟐 𝝐𝒕

Evaluation:

• “ACC”  Relative frequencies of picking  
        all the significant variables.
• “TPR”  Picking Correct model
• “FPR” False Positive rate
• “FNR” False Negative rate

Error/accuracy metrics. 

As an alternative methodology—novel in sparse ARMA selection, to our 
knowledge—we propose INLA for fast posterior inference in latent Gaussian 
models, combined with KL-based model selection via posterior predictive 
projection, achieving sparsity without MCMC convergence concerns.
➢ Deterministic approximations for marginal posteriors in Latent Gaussian 

Models (LGMs
➢ Exploits GMRF sparsity for fast linear algebra (sparse Cholesky).
➢ Orders-of-magnitude speedups vs. MCMC in typical LGM settings.

INLA structure can be presented into three layers: 
Laten Gaussian Models (LGMs):
• Likelihood: yi~p(yi| ηiθ2)
• Latent field: x|θ1~N(0, Σ)

• Hyperparameters: 𝜃 = 𝜃1, 𝜃2 … . ⊤ ∼ 𝑝 𝜃

p(xi|y) = න p(xi| θ, y)p(θ|y)dθ

Gaussian Markov Random Fields(GMRFs):
• Latent field has a sparse precession matrix Q = Σ−1

• Sparsity encode conditional independence Qij = 0 ⟺  xi ⊥ xj (i ≠ j)

INLA:
1. Approximate p(θ|y) with Laplace around conditional mode.

2. Approximate p(x|θ, y) with Gaussian or Laplace approximation.
3. Numerical integration over θ

𝑝 𝑥𝑖 𝑦 ≈ ෍

𝐾=1

𝐾

𝑝 𝑥𝑖 𝜃𝑘 , 𝑦 𝑝 𝜃𝑘 𝑦 Δ𝑘

I: Choose a high AR order 𝒎 = 𝐦𝐚𝐱 𝟏𝟎 𝐥𝐨𝐠𝟏𝟎 𝒏 , 𝐦𝐚𝐱 𝒑, 𝒒 + 𝟏  
and fit  𝒚𝒕 = 𝜷𝟎 + σ𝒊=𝟏

𝒎 𝜷𝒊𝒚𝒕−𝒊 + 𝜼𝒕, 𝜼𝒕 ∼ 𝑵 𝟎, 𝝈𝜼
𝟐  

 using Markov Chain Monte Carlo method (Gibbs sampling).

II: Run MCMC for  𝒚𝒕 = 𝝁 + σ𝒊=𝟏
𝒑

𝜶𝒊𝒚𝒕−𝒊 + σ𝒋=𝟏
𝒒

𝜽𝒋 ෞ𝜺𝒕−𝒋 + 𝝂𝒕, 𝝂𝒕 ∼ 𝑵 𝟎, 𝝈𝝂
𝟐  

or : 𝒀 = 𝑿𝒃 +  𝝂 with 𝒃 = 𝜶; 𝜽 and𝑿 = 𝒚𝒕−𝟏: 𝒕−𝒑 ො𝜺𝒕−𝟏: 𝒕−𝒒 .
 Priors: 𝒃 ∼ 𝑵𝒑+𝒒 𝟎, 𝚺𝒃 ,  𝝈𝝂

𝟐 ∼ 𝑰𝒏𝒗 − 𝑮𝒂𝒎𝒎𝒂(αν, βν)

To introduce sparsity in the ARMA framework, we use modern Bayesian 
global–local shrinkage priors: the Horseshoe & Horseshoe+. These priors 
apply strong shrinkage to small or irrelevant coefficients while allowing 
important ones to remain large. The Horseshoe prior achieves this through a 
hierarchical Half-Cauchy structure, while Horseshoe+ extends it with an 
additional layer of shrinkage, improving performance in highly sparse 
settings. To apply shrinkage, we have chosen different priors in the second 
step of the Framework.
Horseshoe Priors:
Formally, for each ΑΡΜΑ coefficient (for simplicity we are using β) βι the 
Horseshoe prior is defined as:
1.  Hierarchically (per coefficient):

   𝝈𝟐 ∼ 𝑰𝒏𝒗 − 𝑮𝒂𝒎𝒎𝒂 𝜶, 𝜷 ,  𝝀𝒊 ∼ 𝑪+ 𝟎, 𝟏 ,   𝝉 ∼ 𝑪+ 𝟎, 𝟏

𝜷𝒊 ∣ 𝝀𝒊, 𝝉, 𝝈𝟐 ∼ 𝑵 𝟎, 𝝀𝒊
𝟐𝝉𝟐𝝈𝟐 ,

2. Shrinkage factor:

   𝜿𝒊 ∼ 𝚩 ( 𝟎. 𝟓, 𝟎. 𝟓), 𝜿𝒊 =
𝟏

𝟏 + 𝝀𝒊
𝟐𝝉𝟐

,

This favors values near to 0 or 1 ⇒ keep large effects, crush noise.  
The Horseshoe prior possesses some desirable theoretical properties for 
sparse signal recovery. 
• Optimal Posterior Concentration: The posterior concentrates at the true 

sparse signal at a near-optimal rate, even in high-dimensional settings.
• Oracle Properties: The Horseshoe prior achieves similar performance to 

oracle methods that know the true non-zero coefficients, as shown through 
its shrinkage factor 𝜿𝒊.

• Robustness: The heavy-tailed nature of the prior ensures that large 
coefficients are not over-shrunk, critical for capturing significant AR or MA 
lags in our models.

Horseshoe + Priors:
The Horseshoe+ prior extends the Horseshoe prior to address ultra-sparse 
settings, where the number of non-zero coefficients is extremely small, as 
often encountered in ARMA models with large orders (p,q), by introducing an 
additional layer of local shrinkage to enhances sparsity while maintaining 
robustness for large coefficients. 
1. Hierarchically (per coefficient):

 𝜷𝒊 ∣ 𝝀𝟏,𝒊, 𝝀𝟐,𝒊, 𝝉, 𝝈𝟐 ∼ 𝑵 𝟎, 𝝀𝟏,𝒊
𝟐𝝀𝟐,𝒊

𝟐, 𝝉𝟐, 𝝈𝟐 , 

 𝝉 ∼ 𝑪+ 𝟎, 𝟏 , 𝝀𝟐,𝒊 ∼ 𝑪+ 𝟎, 𝟏 , 𝝀𝟏,𝒊 ∼ 𝑪+ 𝟎, 𝟏 , 

𝝈𝟐 ∼ 𝑰𝒏𝒗 − 𝑮𝒂𝒎𝒎𝒂(𝜶, 𝜷)
2. Shrinkage factor:

𝜿𝒊 =
𝟏

𝟏 + 𝝀𝟏,𝒊
𝟐𝝀𝟐,𝒊

𝟐𝝉𝟐

Global-Local shrinkage

Model Selection

Kullback-Leibler divergence estimate
𝑉⊥ ⊂ 𝑉𝐹 = {1, … , 𝑝 + 𝑞}
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Where S  denotes the total number of MCMC draws used to approximate 
the posterior predictive distribution, 𝑽⊥ is a submodel & 𝑽𝑭 the full 
model.

Integrated Nested Laplace Approximation

High Level of the Methodology

Simulations
We Compared Bayesian regularization with Horseshoe (HS/HS+) to Auto 
ARIMA, INLA, and ADAM on synthetic seasonal ARMA. The Monte Carlo Setup 
included 1000 replicates with 4 different sample sizes n𝜖{120,240,360500}, 
using the same models from the paper “Subset ARMA selection via the 
adaptive Lasso”.
Data-generating models ( where B is the backshift operator):
I: 1 − 0.8𝐵 1 − 0.7𝐵6 𝑦𝑡 = 𝜖𝑡  
II: 1 − 0.8𝐵 1 − 0.7𝐵6 𝑦𝑡 = 1 + 0.8𝐵 1 + 0.7𝐵6 𝜖𝑡

ARMA(7,7) Model II – HS+ & PPP

ARMA(7,7) Model II – Auto ARIMA

Results from ARMA(7,7) Model II
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