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Introduction

This work investigates sparse ARMA models for time-series data—settings
where only a few lags matter. Motivated by a paper “Subset ARMA selection
via the adaptive Lasso” for model selection and shrinkage, we design a
Bayesian framework with two complementary approaches:

1. global-local shrinkage via Horseshoe/Horseshoe+ priors combined

Model Selection

HS/HS+ priors yield nearly sparse posterior draws but do not set unwanted
ARMA coefficients exactly to zero; we enforce true sparsity via a final model
selection step using Kullback-Leibler divergence between posterior predictive
distributions—favoring parsimonious submodels with minimal KL to the full
model.

I: Choose a high AR order m = max([10 log,o(n)], max(p,q) + 1)

and fit y, = Bo + X121 Bi¥-i + M, M ~ N(0, 07)
using Markov Chain Monte Carlo method (Gibbs sampling).

l: y, = (1+0.8B)(1+0.7B%)¢, IV:y, = (1—0.6B — 0.8B?)¢,

Evaluation: .
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ll: RunMCMC for y, = p+ Y0 a;y, ; + X, 0; & +v,, v, ~ N(0,07)
all the significant variables.

or: Y = Xb + v with b — [a, 0] andX — [yt—llt—p gt-l:t—q ].
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with predictive posterior projection, and ) b 2 * “TPR” Picking Correct model s %
2. an INLA-based formulation with predictive posterior projections. Priors: b ~ Np,14(0,Zp), oy ~ Inv — Gamma(ay, B,) Kullback-Leibler divergence estimate * “FPR” False Positive rate kS EES
We benchmark these against Auto-ARIMA and ADAM. VicVe={1,..,p+q} « “FNR” False Negative rate T g
The aim is to compare the models and find which is more efficient finding the 1 ] ) (y ~ O
- eJor: ODCC NFINKAOE _ a> (V) .
Data generating Model. , A4S ‘ L¥el= : D(VglVy) =< ) log—=—r Error/accuracy metrics.
To introduce sparsity in the ARMA framework, we use modern Bayesian Ss=1 'S (V) N N N
ARMA M | global-local shrinkage priors: the Horseshoe & Horseshoe+. These priors RULEIENN YT CRRGERCLE Ty LY @l #) (03 X (o [ EAWERTEY-G R G o] o () A B Var; = o= 1_ =D (85— ), where §; = %Z d;, Bias; = %Z b — 0,
Ode apply strong shrinkage to small or irrelevant coefficients while allowing EiRIISE gl @Yo A\ Xe I gl IV ia oYy P /A X R0 [T aa Lo e IR AR 4% 4 =R {11 i=1 i=1 i=1
P d important ones to remain large. The Horseshoe prior achieves this through a EileYs =18 -
Yy = z o;Ye_j + z Bjst—j T &, hierarchical Half-Cauchy structure, while Horseshoe+ extends it with an .. -
’ = - MSE; = Biasj + Var;, MSEaw = MSE;
i=1 j=1 additional layer of shrinkage, improving performance in highly sparse Integrated Nested Laplace Approximation : : J J; '
g ~ i.i.d. (0,0?) settings. To apply shrinkage, we have chosen different priors in the second As an alternative methodology—novel in sparse ARMA selection, to our S MQRLS

witha; = 0orf; = 0formanyi,j = sparse structure.
Combination of Autoregressive (AR) & Moving Average (MA) Models
with (p,q) their finite lag orders.
Required Properties:
1. Weak Stationarity: constant mean & variance.
2. Invertibility: unique representation of the process.

step of the Framework.
Horseshoe Priors:
Formally, for each APMA coefficient (for simplicity we are using B)
Horseshoe prior is defined as:
1. Hierarchically (per coefficient):
% ~ Inv — Gamma(a, ), 1; ~ C*(0,1), T~ C*(0,1)
Bi | 4;,t,6% ~ N(0, 271t262),

B, the

knowledge—we propose INLA for fast posterior inference in latent Gaussian

models, combined with KL-based model selection via posterior predictive

projection, achieving sparsity without MCMC convergence concerns.

» Deterministic approximations for marginal posteriors in Latent Gaussian
Models (LGMs

» Exploits GMRF sparsity for fast linear algebra (sparse Cholesky).

» Orders-of-magnitude speedups vs. MCMC in typical LGM settings.
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Stationary Time Serie non-Stationary Time Serie MUdE]. f]:‘}q:'E Sample Size MCMC Time (E) INLA Time (E) ACC 0.84 0.88 0.90 0.90
Simple Linear Regression 100 4.19 0.176 TPR 0.93 0.97 0.99 0.99
| n ‘ : . Simple Linear Regression 2000 381.573 2.7T87
2. Shrlnkage factor: Poisson GLM with IID Effect 100 30.394 0.383 MSE av - -
\ ‘\ b AM “ A /\ ﬂﬂ h ﬂm ” ] - B ( 0.5 0 5) 1 1 Poisson GLM with IID Effect 100000 > 6 hours 166.819
AT CA RN LR .~ .5,0.5), . = , ACC 0.84 0.88
Y ! LT 14 22 .
This favors values near to 0 or 1 = keep large effects, crush noise INLA structure can be presented into three layers: e o i il .

Bavesian Framework

The Horseshoe prior possesses some desirable theoretical properties for
sparse signal recovery.
* Optimal Posterior Concentration: The posterior concentrates at the true

Laten Gaussian Models (LGMs):

* Likelihood: y;~p(yi| ni0>)
* Latentfield: x|6;~N(0,ZX)

MSE av
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Comp. Time

e Hyperparameters: 0 = [04,0, ....]T ~ p(6)

p(xily) = f b(xi] 6,y)p(8ly)do

Gaussian Markov Random Fields(GMRFs):
 Latentfield has a sparse precession matrix Q = X1
Sparsity encode conditional independence Q;; = 0 & x; L xj (i #]

sparse signal at a near-optimal rate, even in high-dimensional settings.
Oracle Properties: The Horseshoe prior achieves similar performance to
oracle methods that know the true non-zero coefficients, as shown through
its shrinkage factor k;.
Robustness: The heavy-tailed nature of the prior ensures that large
coefficients are not over-shrunk, critical for capturing significant AR or MA
lags in our models.
Horseshoe + Priors:
The Horseshoe+ prior extends the Horseshoe prior to address ultra-sparse
settings, where the number of non-zero coefficients is extremely small, as
often encountered in ARMA models with large orders (p,q), by introducing an
additional layer of local shrinkage to enhances sparsity while maintaining
robustness for large coefficients.
1. Hierarchically (per coefficient):
ﬁi | Al,i'lz,ii T, 0'2 ~ N(O, Al,izlz’iz,'l'z,ﬂz),
T~C%(0,1), Ay i~ ct(0,1), Ayi~ ct(0,1),
6% ~ Inv — Gamma(a, )

Bayesian methods offer a different approach to statistical analysis,
parameters are random variables with prior distributions, updated by, °
observed data to yield posterior distributions. This approach incorporates
prior knowledge and quantifies uncertainty in parameter estimates.
Frequentist approaches, by comparison, view parameters as fixed unknowns | °
and base inference entirely on the data, typically offering point estimates
without a complete uncertainty distribution.
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INLA:
1. Approximate p(0|y) with Laplace around conditional mode.
2. Approximate p(x|0, y) with Gaussian or Laplace approximation.
3. Numerical integration over 0 |

Bayesian Framework:

p(Oly) « p(y|0) p(6), 6 =(n a, B, o)
posterior likelihood prior

ARMA(7,7) Model Il — HS+ & PPP

Model & Likelihood :
For observations y = (y1, ..., ¥) ,

y ~ N, (,u 1, Z(a, ﬁ,az))

Where ¥ = ¢?LL" and L is the lower-triangular matrix built from MA (o)
coefficients:
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2. Shrinkage factor: Model Fit
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and B is a backshift operator :

B~ Ng(0,2p)
¢ 0%~ Inv—Gamma(a,b)

" o] H H :

' Priors: - I-'I:recllct-lve . |
HS+ osterior | ‘ '

e 1w~ N(ug,of) —|HS .. | S

4- —{bL Projection - : i

| -|Laplace : 2 .

We Compared Bayesian regularization with Horseshoe (HS/HS+) to Auto
ARIMA, INLA, and ADAM on synthetic seasonal ARMA. The Monte Carlo Setup
included 1000 replicates with 4 different sample sizes ne{120,240,360500},
o using the same models from the paper “Subset ARMA selection via the
" o A adaptive Lasso”.
| e ' ——— R T | Data-generating models ( where B is the backshift operator):

s I: (1 —0.8B)(1 —0.7B®) y, = ¢, ; |

6 - - I1: (1 —0.8B)(1 —0.7B%) y, = (1 + 0.8B)(1 + 0.7B®)¢, S U A A A
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Posterior: | 2.
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In practice the innovations {&;} are unobserved. Under invertibility, MA(q)
can be estimated from an AR(o) representation. We use a two-step Bayesian
scheme, approximate & from data and then sample form the Priors.
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