Machine Learning Techniques For The Estimation of The

Operating Parameters of Solar Cells

Papadomichelakis Georgios
University of Crete

Department of Mathematics and Applied Mathematics
temp52 @math.uoc.gr

Abstract

We consider the problem of predicting the internal temperature in photovoltaic cells depending on ambient and/or internal factors. In this thesis we use machine learning techniques, specifically deep learning and neural networks to accurately forecast the temperature
using methods we developed. We present an introduction to the mathematical background of neural networks and build some using the Python3 programming language and TensorFlow. Lastly we present the numerical results comparing what our neural networks

managed to predict to the actual temperatures measured.

Keywords:

e Machine Learning
e Weights & Biases

e Neurons
e (Gradient Descen

e Artificial Neural Networks
e Optimization

e Deep Learning
e Activation Functions

Introduction

During the recent years, there 1s an ever-growing research interest on Artificial Intelligence (Al). Another term
we hear about, more and more often, is Machine Learning (ML) which can be seen as a subset to Al. Neural
Networks (NNs) and Deep Learning (DL) are both included in that subset of Machine Learning. This thesis
1s about using Artificial Neural Networks (ANNs) and deep learning methods, in order to deal with a problem
coming from the photovoltaic cells’ industry. In particular we are interested in developing supervised machine
learning techniques for estimating the operating temperature of photovoltaic cells (PV cells) using various
parameters.

Artificial Neural Networks

A feedforward neural network is an ANN which 1s described by an algorithm working in layers where the
connections between the neurons do not form a cycle and the data are passing from the input neurons to the
adjoined neurons and so on

In order to define a neuron we need a set of synapses, each characterized by a weight. Specifically, a piece of
data x; at the input of synapse j, connected to the neuron k, is multiplied by the synaptic weight wy ;.

We can describe the neuron £ of an ANN as following:

m
2L = Zwkﬂ’] + by,
J=1

where wy, ; 18 the corresponding weight for the neuron £ and synapse j and by, 1s the bias term.
After the summation i1s completed a mathematical function, called activation function 1s applied. The output
of that neuron, after the data have been processed and the activation functions have fired, are set as

yr = a(zy),

where a(-) is the activation function.

An ANN 1s described by one input layer, one output layer which gives the final predictions of the model and
one or more hidden layers between the input and output layers.

We represent all the synaptic weights connecting all neurons of a given layer fully connected to its previous
layer, by a matrix of weights. The notation for the biases is simpler and can be expressed as a vector, b € R"".

input to hidden layer weights hidden to output layer weights

W12 W14 W52 W53
W22 w24 W62 W63 Hidden Output
W32 W34 W72 W73 layert layber
hiases biases
‘— O Bl B4
o B2 B5
B1 N [i:% Bb

The above figure 1s a visualization of the notation we used so far.

Universal Approximation Theorem
Let o be any continuous sigmoidal function. Given any function f € C([,,) and € > 0, there is a sum

N

G(r) = Z cja(ij:I: + b))
j=1

for which

G(x) — f(x)| <e Vxely,
In other words, the finite sums of the above form are dense in C([,,) B
The goal of any algorithm in deep learning is to minimize a cost function. A cost function i1s a mecha-

nism that returns the error between predicted outcomes compared with the actual outcomes. We can view this
cost function as a mountain where high altitude means big errors and low altitude means small errors.

i

Gradient Descent

In order to minimize the cost, machine learning algorithms most often use the Gradient Descent algorithm.
Gradient descent, indicates where our next step should head for. We could summarize the process in the
following steps:

e Start with a random point/vector p of parameters 6,.

* Repeatedly calculate the gradient V.J(p), take small steps in that direction and update the parameters using
p = p — aV.J(p) until we (hopefully) converge to a minimum. The parameter « is called the learning rate
1.e. the length of the step.

Implementation/Methodology

We implement three different methods to approximate the temperature of the cells, differing only in the data
used as inputs of the ANN:Ss.
e First Method Data Used:

— solar 1irradiance Girr(w/mz) — short circuit current]SC<A>

— air temperature 1;,-(C') — open circuit voltage Voc(V)

— wind speed W (m/s)
e Second Method Data Used:

— Normal Operating

— solar irradiance G;,.,.(w/m?)
Cell Temperature T o7 (C)

— air temperature 1, (C')
—wind speed W (m/s)

e Third Method Data Used:

— Results from 5 different empirical formulas for estimating the cell’s operating temperature

—module’s efficiency n,.. r(14.5%)

Empirical Formulas

Tg = Lyir + %(TNOCT - 20)(1 — n’ref) (5.7 —S??SW)
T2 = Tyir + 0.0138G (1 + 0.031 T,)(1 — 0.042W)(1 — 1.053n,. ¢)
T = 0.943T;, + 0.028G,, — 1.528W + 4.3
TF = 30.006 + 0.0175(Gjyr — 300) + 1.14(T;, — 25)
TK — 7+ Gyype— 347300594

These formulas are extremely inaccurate so we need to find a better combination of those. We can see how
inaccurate they are in the figure below.

60

501

40 -

Temperature (°C)

30+

20+

0 200 400 600 800 1000 1200 1400
Data points

Numerical Results

In the figure above we can see the graphs of two different DNNs, comparing the observed temperature (red)
with the network’s predictions (blue) for the first method. On the left side of the figure we have the predictions
of the network with 2 hidden layers and 5 neurons in each hidden layer, while on the right side we have the
predictions of the network with 5 hidden layers and 40 neurons in each hidden layer.

L L L
Nt 2 3 4 5 Nt 2 3 4 5 Nt 2 3 4 5
5 10.711/0.6230.602 0.609 5 |1.233]1.182]1.074 1.109 5 |1.351/1.396 1.210 1.316
10 | 0.589/0.57810.532/0.447 10 | 1.106]0.8630.945 1 0.806 10 | 1.426|1.0851.005/1.063
15 10.630/0.4630.435/0.375 15 | 1.067/0.7710.663 0.699 15 | 1.276/0.958 10.8600.797
20 [0.619/0.6290.392 0.396 20 10.928/0.659 0.5640.471 20 |1.316/0.9370.747/0.677
30 |0.684 0.4450.326 0.299 30 0.9780.609 0.563 0.622 30 | 1.262 0.866 0.644 0.654
40 |0.56710.530/0.322/0.229 40 10.963/0.604|0.47510.424 40 | 1.27510.786|0.654 1 0.430

The tables above, depict the mean absolute errors for each method used (1,2,3) starting from left to right,

for various numbers of neurons (Nr) and various numbers of hidden layers (HL)

