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‘ 1. Setup I

Goal: Image extended scatterers in a terminating waveg-
uide.

Z = 24 z=1 z=R

S

r=2D A

e Waveguide: Homogeneous in (), , inhomogeneous in QE
e (): extended scatterer (typical size ~ wavelength, \y).

e vertical array A: N transducers

e Data: Array response matrix I1(w) for the scattered field.
e S: search domain.

‘ 2. Preliminaries I

The Helmholtz equation is given by

AN

~ AP w, &) = k()P (w, T) = flw, &), &€

We denote G'i(&, ;) the Green’s function for the Helmholtz
operator —A - —k°-, for a point source, where £ is the (real)
wa_venumber. In O we denote {/,, X, },—12 . the eigen-
pairs of

X"(z)+puX(x) =0, z€(0,D) and X(0)=X(D)=0,
and assume - an index M such that it holds in Q7

2
Har < ko< HM415

so we have the horizontal wavenumbers:

in/pn — k2, n> M +1, ~ evanescent modes

‘ 3. Passive Imaging I

We consider the passive imaging problem for a point source
placed at ', = (25, x4).
Za R

Bn = { VE? = i, 1 <n <M, ~ propagating modes

fs — (Zsa xs)

Al

A“

z=D

Our data for imaging is the vector II(Z,,w),which is the
Green’s function going from z; to x,:

ﬁ(fr, W) — @R(£r7 £37 w>

Based on phase conjugation, we may write for a single fre-
quency w, x, = (z,,v) € Aand y° € S:

17(5%) = [ G0 G, ) do,
A

If we assume that we have an array capable of recording
the field as well as its normal derivative, then we have that

AN AN

I(y*) = /A (V@R(:Er,gs)GR(f,,.,a?s)—GR(:Er,gS)V@R(f,,.,a?S))-dS.

where dS is the outward pointing surface element.
For our waveguide, we can prove a Kirhhoff-Helmholiz type
identity [1], given by

| (VG @.57C" . %.) - G(5.5°) VGG 7)) - s

— @R(f& y—’S) o @R<£87 ,g’S)’

which, after calculations can be written as

M
%> B G20, &) G20, §°) = G'(@5, §7) — G'(Fs, 5°),
n=I1

where G’ (z,, &) is the projection of the Green’s function on
the propagating modes,

AN D AN
Gﬁ(za,fs):/() G'(2q,2)), Zs) Xn(z") da’.

Let
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be the projection of the recorded field on the propagating
modes [2]. In this case P, is given by

P, — /O e (20, 7), &) Xn(x) dz (: G (2, ;zs)) |

We define our imaging functional 7" as

Mo
T(G®) =Y  BnPp Gl(za, 5°).
n=1

From the Kirchhoff—Helmholtz identity we get

. 1
IMy°) = ¥

We consider a source located at ; = (380,100) m and a
single frequency f = 73 Hz. The waveguide has depth
D = 200 m, ¢y = 1500 m/s. We have M = 19 propagat-

Ing modes, the vertical boundary is at 7 = 550 m and our
search domain is & = (230, 530] x [0, D].

(G5, &) - G(5°, @) ) = m G (", &),

Good source local-
Ization

Low Signal-to-
Noise Ratio (SNR)

4. Active Imaging I

—or a point scatterer, assuming unit reflectivity on the scat-
terer, the response matrix may be written as

AN

H(fs, fr, w> — GR<£*7 fs, W)GR(CE‘Tj £*7 CU),
and the projected response matrix P is given by
P, = / / [z, @, w) Xp(xs) Xon(x)) degdr,, mn=1... M.
0 0

For active imaging we propose the use of

M M
TG =3 Y BuBmPum G20, %) G (24, U)-

n=1m=1

Using the Kirchhoff—Helmholtz identity we obtain

(%) = (I G(g*, ) = (2(5°))

We consider a scatterer with the same setup as before.

Good scatterer local-
Ization

Higher SNR than pas-
sive

5. Resolution analysis I

~or a homogeneous waveguide, 7" for y = (z, z), becomes

M

7(5) = 53 5 (008 Bz = 20 = cos 2R - 2 = 2)) X,0) Xofa).

n=1

We may consider it as a Riemann sum approximation of an
integral which, in turn, can be evaluated analytically. Con-
sidering v at the correct range or cross-range, 7" becomes

() ~ 1_16 [(Jo(ozg) — Jo(B0) — (Jo(y/a? +72) — Jo(y/ 87 + %2))] ,

where for the cross-range, i.e. y = (z;,z) and /' = z,

2m(r — x 2m(x + x A
Ny = ( )\ S>7 6:17: ( )\ S>7 /Vx:T(R_ZS)a
and for the range i.e. y = (2, x5) and / = z,
2T 2T A

For s < R, the resolution is defined by .Jy(a), since a, and
a. are much smaller than the other arguments.
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For both range and cross-range, the resolution is A /2.
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‘ 6. SNR issues I

Our image has a widely varying SNR, for different frequen-
cies.
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We wish to stabilize our image by using multiple frequen-
cies.

1-D plots in depth (correct range)

Frequencies Superimposed ~Sum

£=67.625 (1) 78.625 Hz, z_

(67.625, 78.625] Hz
B =11 Hz

pth (m)

31.875,114.375] Hz
B =82.5 Hz

(m)

We observe coherent oscillations and high secondary
peaks for the small bandwidth and incoherent oscillations
and lower secondary peaks for the larger bandwidth. We
have a similar behavior in range.

2-D plots
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f € 167.625,78.625| Hz f € [31.875, 114.375] Hz

B =11 Hz B =82.5 Hz

SNR improves as the bandwidth increases.

‘ 7. Extended scatterers I

Semicircle (Data computed with Born)
Infinite Terminating

No threshold -

Threshold 0.4 .

Disc (Data computed with Montjoie [3])
Infinite Terminating

Threshold 0.4

Rhombus (Data computed with Montjoie [3])
Infinite Terminating

. _

Threshold 0.4
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