

Imaging extended reflectors in a terminating waveguide

University of Crete

C. Tsogka^{2,3}, D. A. Mitsoudis^{1,3}, S. Papadimitropoulos^{2,3}

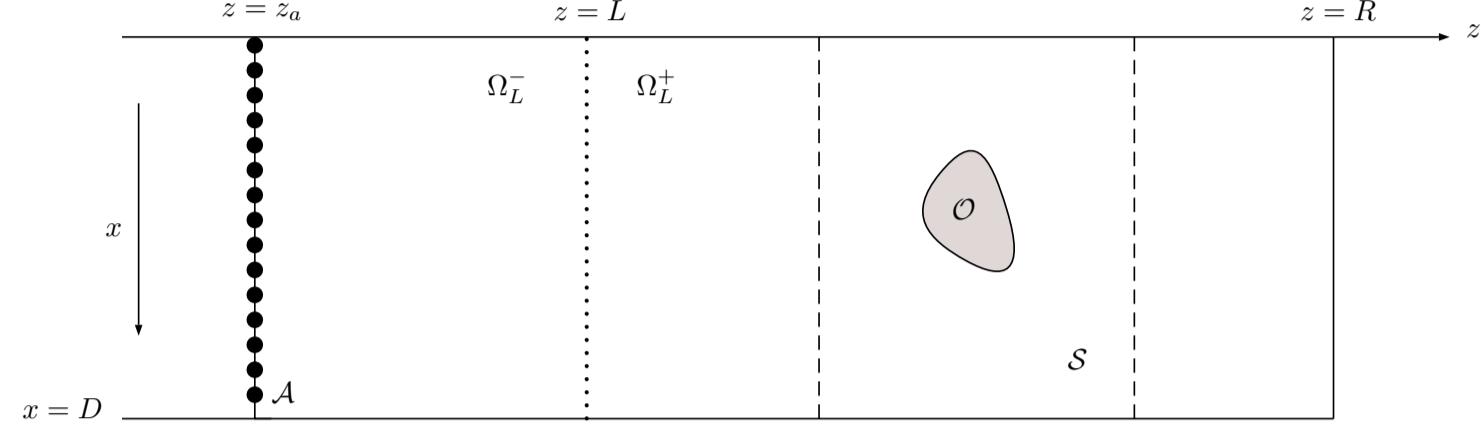
¹ Department of Energy Technology Engineering, Technological Educational Institute of Athens

² Department of Mathematics & Applied Mathematics, University of Crete

³ Institute for Applied & Computational Mathematics, F.O.R.T.H.

1. Setup

Goal: Image extended scatterers in a terminating waveguide.



- **Waveguide:** Homogeneous in Ω_L^- , inhomogeneous in Ω_L^+ .
- \mathcal{O} : extended scatterer (typical size \sim wavelength, λ_0).
- vertical array \mathcal{A} : N transducers
- **Data:** Array response matrix $\hat{\Pi}(\omega)$ for the scattered field.
- \mathcal{S} : search domain.

2. Preliminaries

The Helmholtz equation is given by

$$-\Delta \hat{p}^{\text{tot}}(\omega, \vec{x}) - k^2(\vec{x}) \hat{p}^{\text{tot}}(\omega, \vec{x}) = \hat{f}(\omega, \vec{x}), \quad \vec{x} \in \Omega.$$

We denote $\hat{G}^R(\vec{x}, \vec{x}_s)$ the Green's function for the Helmholtz operator $-\Delta - k^2$, for a point source, where k is the (real) wavenumber. In Ω_L^- we denote $\{\mu_n, X_n\}_{n=1,2,\dots}$ the eigenpairs of

$$X''(x) + \mu X(x) = 0, \quad x \in (0, D) \quad \text{and} \quad X(0) = X(D) = 0,$$

and assume \exists an index M such that it holds in Ω_L^-

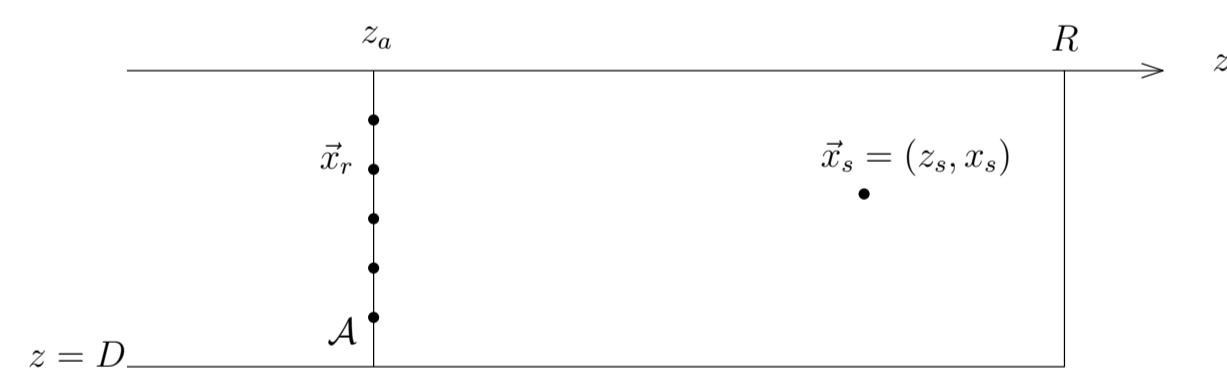
$$\mu_M < k^2 < \mu_{M+1},$$

so we have the horizontal wavenumbers:

$$\beta_n = \begin{cases} \sqrt{k^2 - \mu_n}, & 1 \leq n \leq M, \rightsquigarrow \text{propagating modes} \\ i\sqrt{\mu_n - k^2}, & n \geq M+1, \rightsquigarrow \text{evanescent modes} \end{cases}$$

3. Passive Imaging

We consider the passive imaging problem for a point source placed at $\vec{x}_s = (z_s, x_s)$.



Our data for imaging is the vector $\hat{\Pi}(\vec{x}_r, \omega)$, which is the Green's function going from \vec{x}_s to \vec{x}_r :

$$\hat{\Pi}(\vec{x}_r, \omega) = \hat{G}^R(\vec{x}_r, \vec{x}_s, \omega).$$

Based on phase conjugation, we may write for a single frequency ω , $\vec{x}_r = (z_a, x) \in \mathcal{A}$ and $\vec{y}^s \in \mathcal{S}$:

$$\mathcal{I}^{pc}(\vec{y}^s) = \int_{\mathcal{A}} \hat{G}^R(\vec{x}_s, \vec{x}_r) \hat{G}^R(\vec{x}_r, \vec{y}^s) dx,$$

If we assume that we have an array capable of recording the field as well as its normal derivative, then we have that

$$\mathcal{I}(\vec{y}^s) = \int_{\mathcal{A}} \left(\nabla \hat{G}^R(\vec{x}_r, \vec{y}^s) \overline{\hat{G}^R(\vec{x}_r, \vec{x}_s)} - \hat{G}^R(\vec{x}_r, \vec{y}^s) \nabla \overline{\hat{G}^R(\vec{x}_r, \vec{x}_s)} \right) \cdot dS.$$

where dS is the outward pointing surface element. For our waveguide, we can prove a Kirhoff-Helmholtz type identity [1], given by

$$\begin{aligned} \int_{\mathcal{A}} \left(\nabla \hat{G}^R(\vec{y}, \vec{y}^s) \overline{\hat{G}^R(\vec{y}, \vec{x}_s)} - \hat{G}^R(\vec{y}, \vec{y}^s) \nabla \overline{\hat{G}^R(\vec{y}, \vec{x}_s)} \right) \cdot dS \\ = \hat{G}^R(\vec{x}_s, \vec{y}^s) - \hat{G}^R(\vec{x}_s, \vec{y}^s), \end{aligned}$$

which, after calculations can be written as

$$2i \sum_{n=1}^M \beta_n \hat{G}_n^R(z_a, \vec{x}_s) \hat{G}_n^R(z_a, \vec{y}^s) = \hat{G}^R(\vec{x}_s, \vec{y}^s) - \hat{G}^R(\vec{x}_s, \vec{y}^s),$$

where $\hat{G}_n^R(z_a, \vec{x}_s)$ is the projection of the Green's function on the propagating modes,

$$\hat{G}_n^R(z_a, \vec{x}_s) = \int_0^D \hat{G}^R((z_a, x'), \vec{x}_s) X_n(x') dx'.$$

Let

$$\hat{P}_n = \int_0^D \hat{\Pi}(\vec{x}_r, \omega) X_n(x) dx, \quad n = 1 \dots, M,$$

be the projection of the recorded field on the propagating modes [2]. In this case \hat{P}_n is given by

$$\hat{P}_n = \int_0^D \hat{G}^R((z_a, x), \vec{x}_s) X_n(x) dx = \left(\hat{G}_n^R(z_a, \vec{x}_s) \right).$$

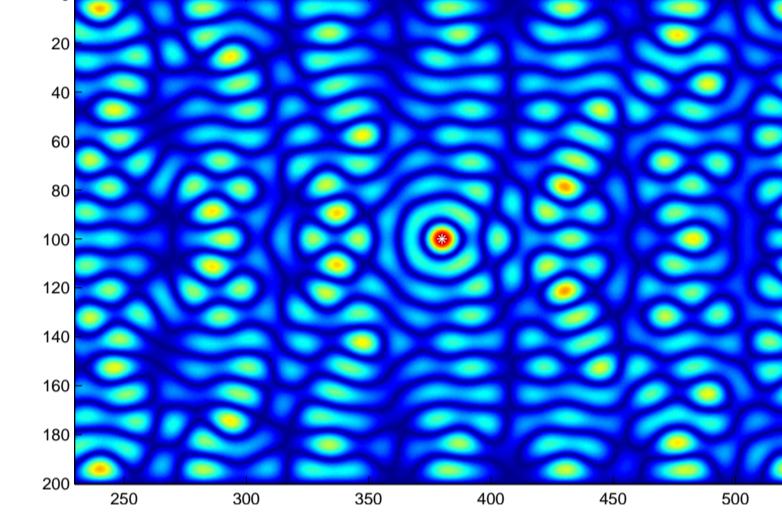
We define our imaging functional \mathcal{D} as

$$\mathcal{D}(\vec{y}^s) := \sum_{n=1}^M \beta_n \hat{P}_n \hat{G}_n^R(z_a, \vec{y}^s).$$

From the Kirchhoff-Helmholtz identity we get

$$\mathcal{D}(\vec{y}^s) = \frac{1}{2i} \left(\hat{G}^R(\vec{y}^s, \vec{x}_s) - \overline{\hat{G}^R(\vec{y}^s, \vec{x}_s)} \right) = \text{Im} \hat{G}^R(\vec{y}^s, \vec{x}_s).$$

We consider a source located at $\vec{x}_s = (380, 100)$ m and a single frequency $f = 73$ Hz. The waveguide has depth $D = 200$ m, $c_0 = 1500$ m/s. We have $M = 19$ propagating modes, the vertical boundary is at $R = 550$ m and our search domain is $\mathcal{S} = [230, 530] \times [0, D]$.



Good source localization
Low Signal-to-Noise Ratio (SNR)

4. Active Imaging

For a point scatterer, assuming unit reflectivity on the scatterer, the response matrix may be written as

$$\hat{\Pi}(\vec{x}_s, \vec{x}_r, \omega) = \hat{G}^R(\vec{x}_s^*, \vec{x}_s, \omega) \hat{G}^R(\vec{x}_r, \vec{x}_s^*, \omega),$$

and the projected response matrix \hat{P} is given by

$$\hat{P}_{nm} = \int_0^D \int_0^D \hat{\Pi}(\vec{x}_s, \vec{x}_r, \omega) X_n(x_s) X_m(x_r) dx_s dx_r, \quad n = 1 \dots, M.$$

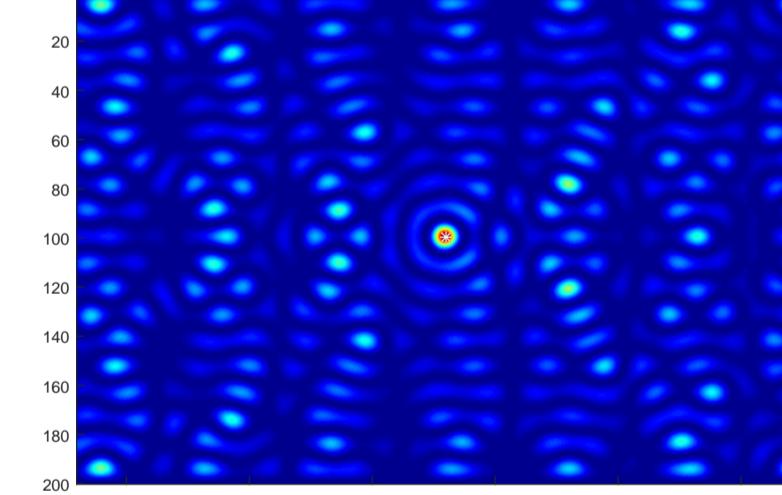
For active imaging we propose the use of

$$\mathcal{D}(\vec{y}^s) := \sum_{n=1}^M \sum_{m=1}^M \beta_n \beta_m \hat{P}_{nm} \hat{G}_n^R(z_a, \vec{y}^s) \hat{G}_m^R(z_a, \vec{y}^s).$$

Using the Kirchhoff-Helmholtz identity we obtain

$$\mathcal{D}(\vec{y}^s) = \left(\text{Im} \hat{G}^R(\vec{y}^s, \vec{x}_s^*) \right)^2 = (\mathcal{D}(\vec{y}^s))^2.$$

We consider a scatterer with the same setup as before.



Good scatterer localization
Higher SNR than passive

5. Resolution analysis

For a homogeneous waveguide, \mathcal{D} for $\vec{y} = (z, x)$, becomes

$$\mathcal{D}(\vec{y}) = \frac{1}{2} \sum_{n=1}^M \frac{1}{\beta_n} \left(\cos \beta_n(z - z_s) - \cos \beta_n(2R - z - z_s) \right) X_n(x) X_n(z_s).$$

We may consider it as a Riemann sum approximation of an integral which, in turn, can be evaluated analytically. Considering \vec{y} at the correct range or cross-range, \mathcal{D} becomes

$$\mathcal{D}(\vec{y}) \approx \frac{1}{16} \left[(J_0(\alpha_\ell) - J_0(\beta_\ell)) - (J_0(\sqrt{\alpha_\ell^2 + \gamma_\ell^2}) - J_0(\sqrt{\beta_\ell^2 + \gamma_\ell^2})) \right],$$

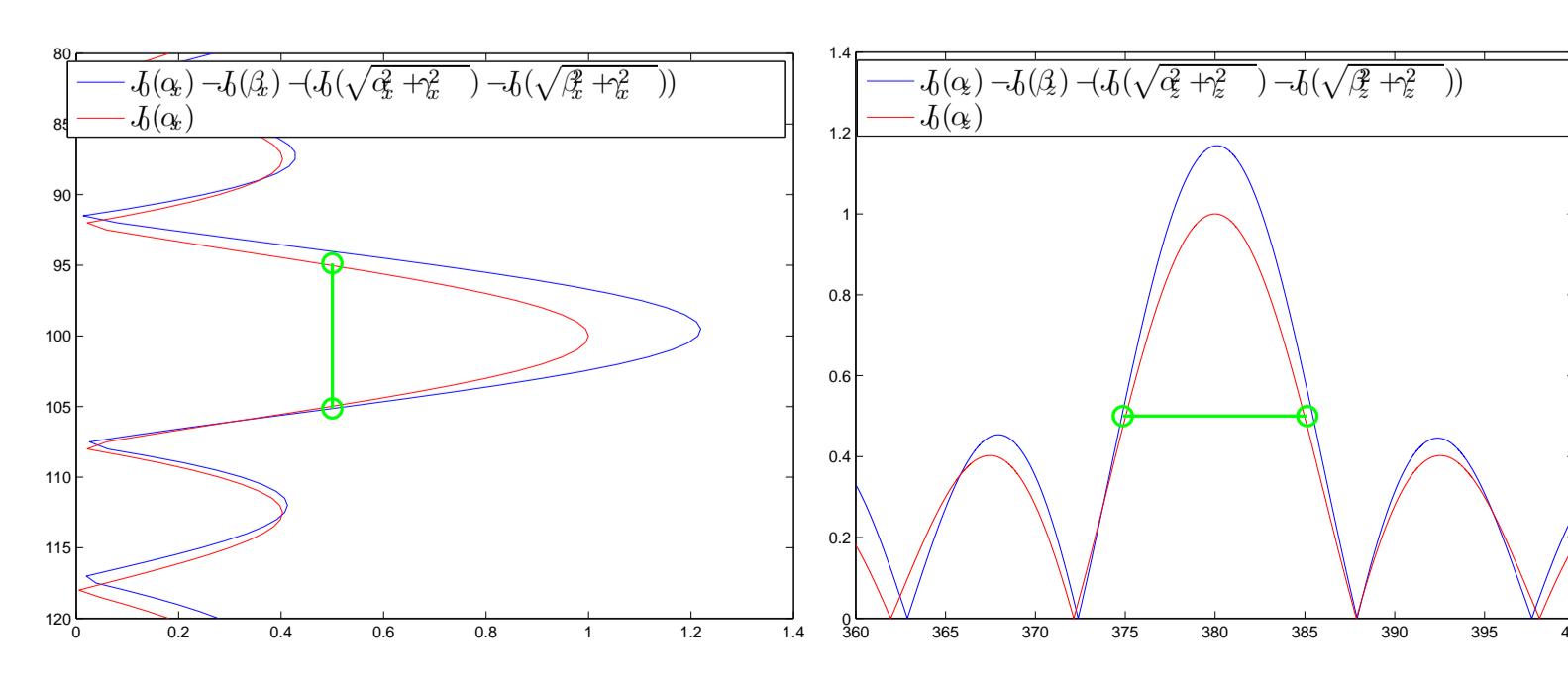
where for the cross-range, i.e. $\vec{y} = (z_s, x)$ and $\ell = x$,

$$\alpha_x = \frac{2\pi(x - z_s)}{\lambda}, \quad \beta_x = \frac{2\pi(x + z_s)}{\lambda}, \quad \gamma_x = \frac{4\pi}{\lambda}(R - z_s),$$

and for the range i.e. $\vec{y} = (z, x_s)$ and $\ell = z$,

$$\alpha_z = \frac{2\pi(z - z_s)}{\lambda}, \quad \beta_z = \frac{2\pi(2R - z - z_s)}{\lambda}, \quad \gamma_z = \frac{4\pi x_s}{\lambda}.$$

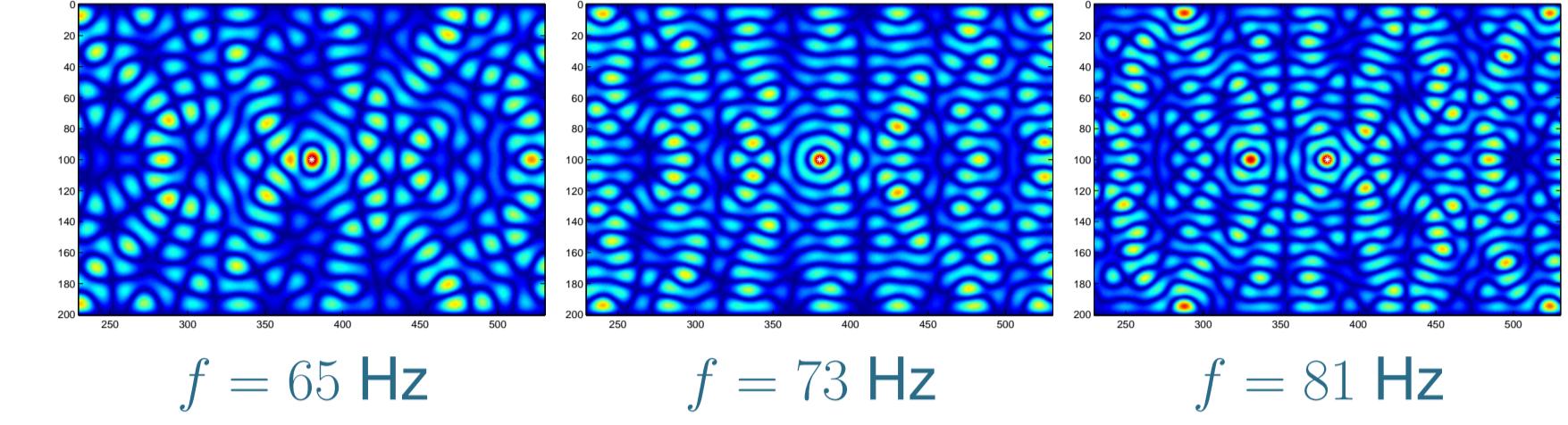
For $z_s \ll R$, the resolution is defined by $J_0(a)$, since a_x and a_z are much smaller than the other arguments.



For both range and cross-range, the resolution is $\lambda_0/2$.

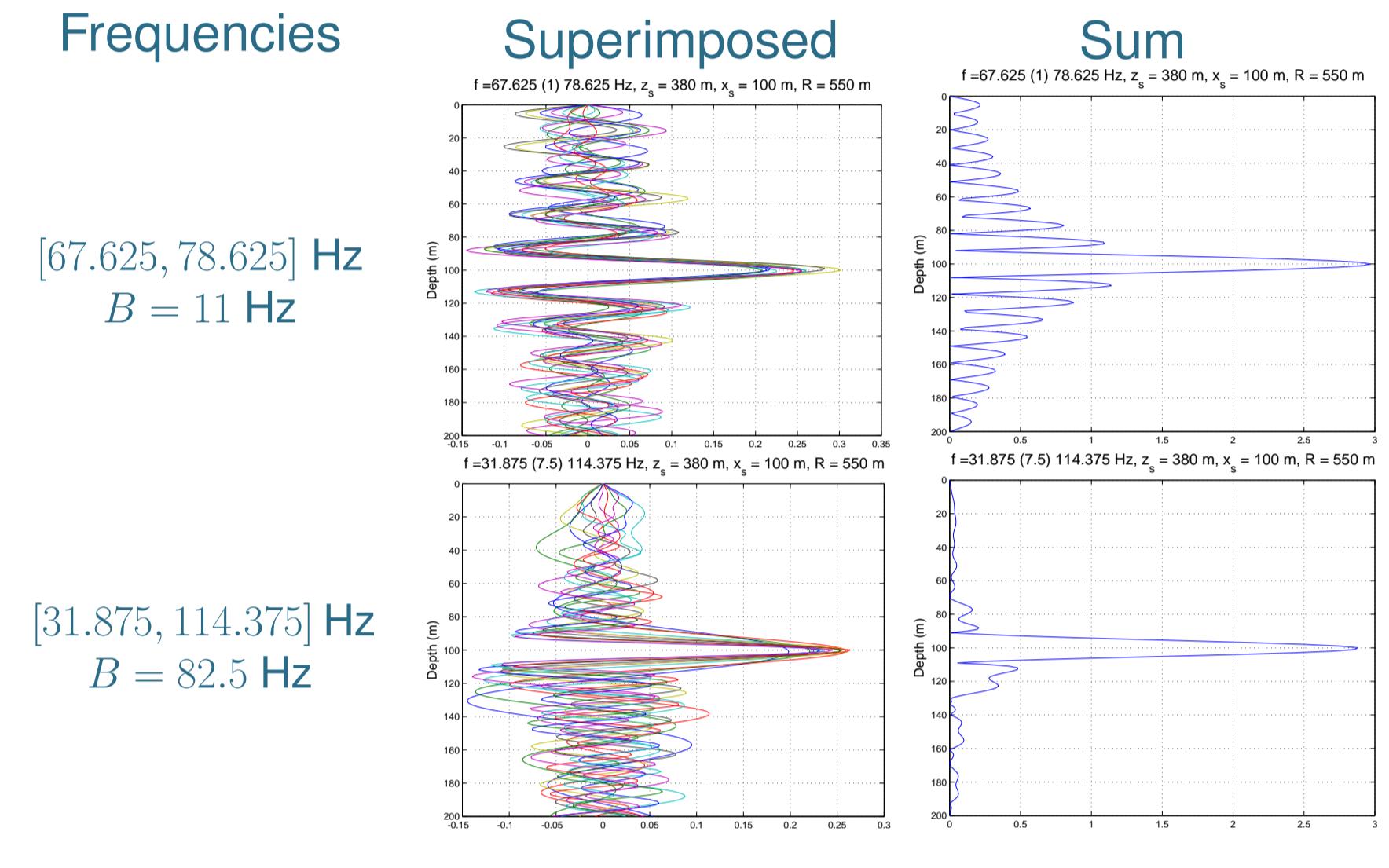
6. SNR issues

Our image has a widely varying SNR, for different frequencies.



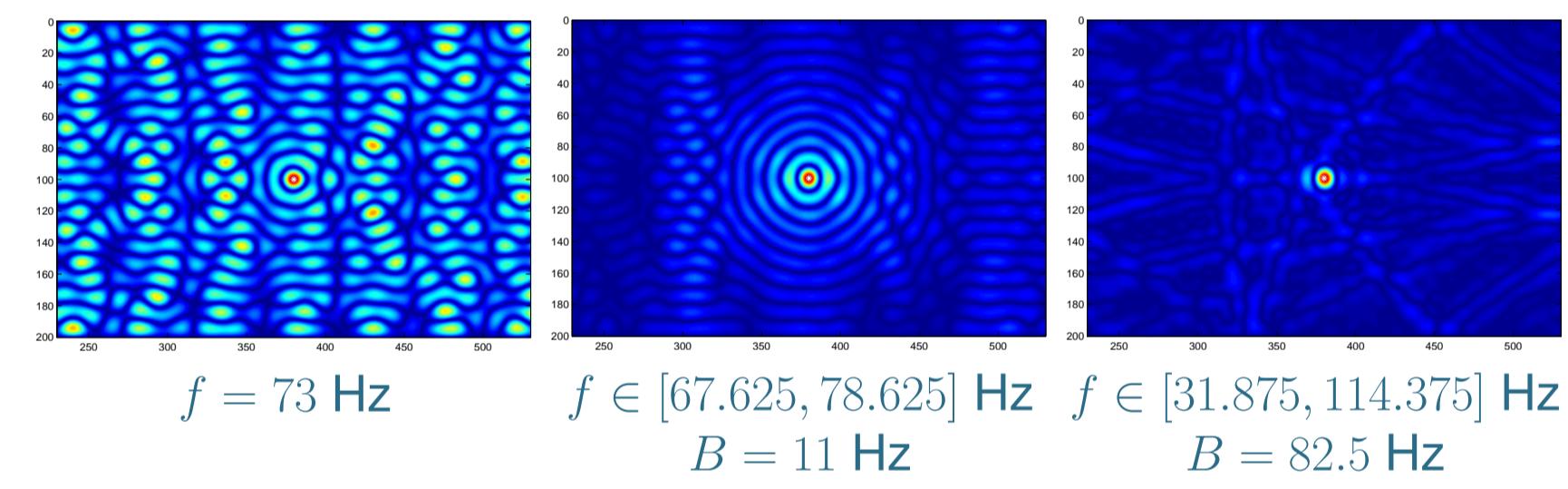
We wish to stabilize our image by using multiple frequencies.

1-D plots in depth (correct range)



We observe coherent oscillations and high secondary peaks for the small bandwidth and incoherent oscillations and lower secondary peaks for the larger bandwidth. We have a similar behavior in range.

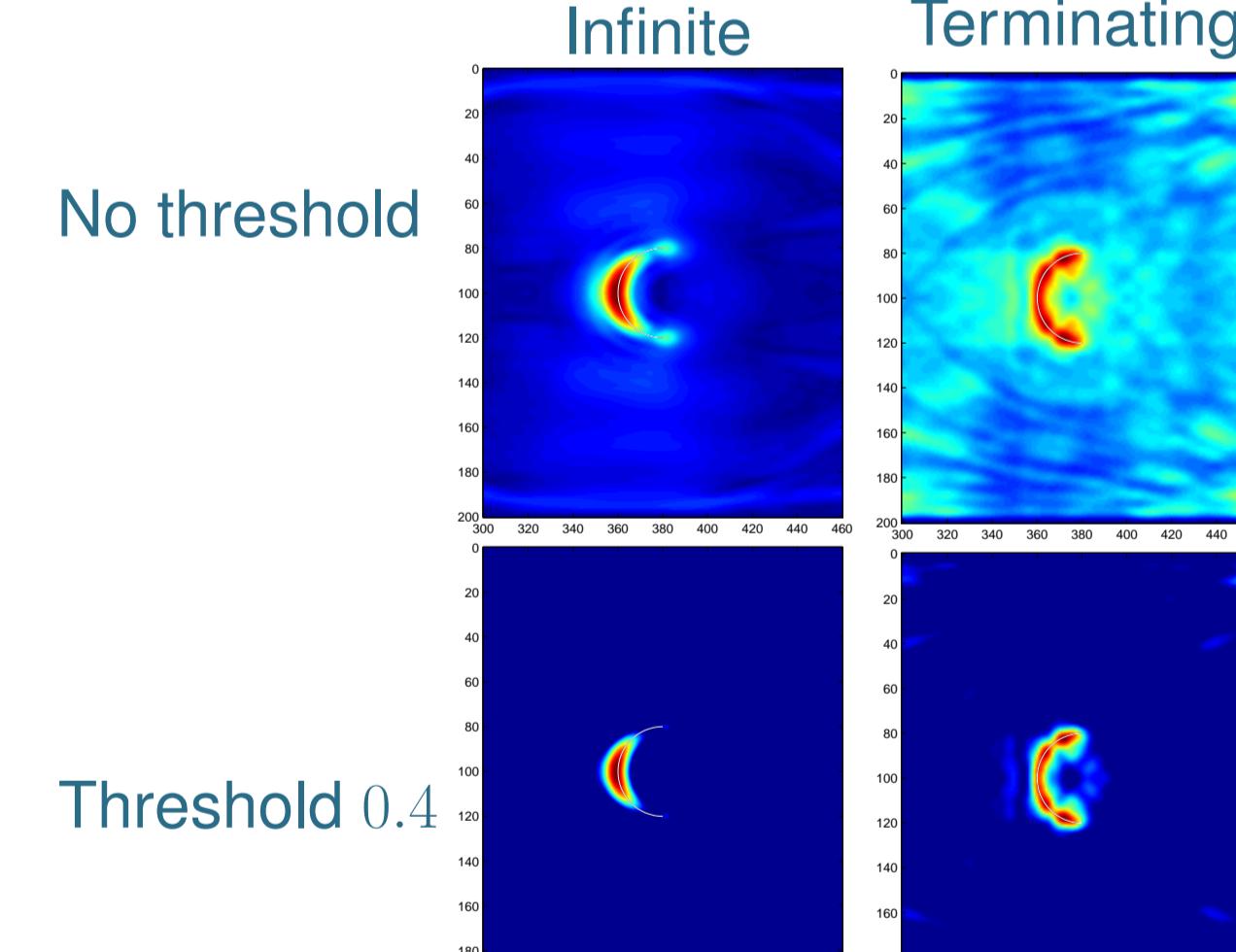
2-D plots



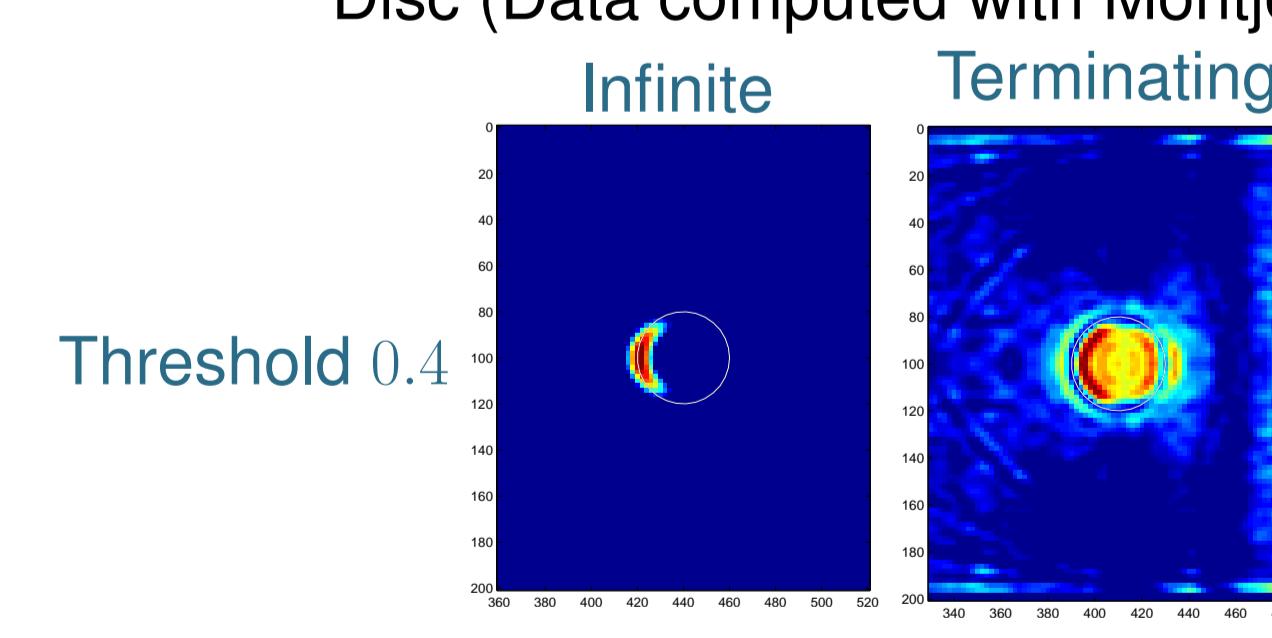
SNR improves as the bandwidth increases.

7. Extended scatterers

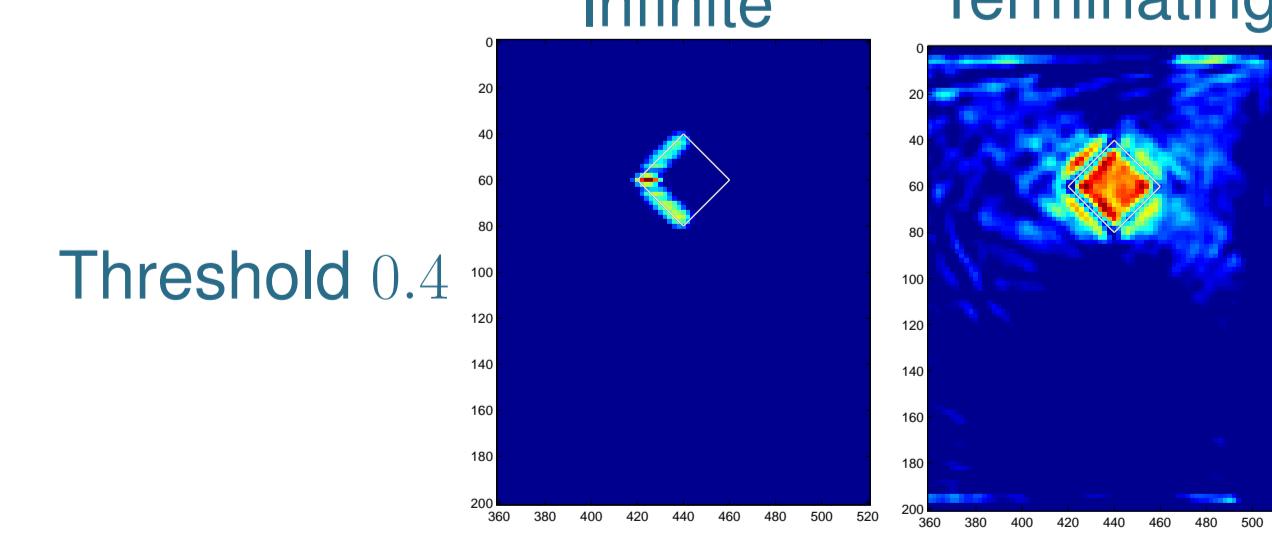
Semicircle (Data computed with Born)



Disc (Data computed with Montjoie [3])



Rhombus (Data computed with Montjoie [3])



References

- [1] D. Jackson, D. Dowling, *Phase conjugation in underwater acoustics*, JASA, 1991
- [2] C. Tsogka, D.A. Mitsoudis, S.P., *Selective imaging of extended reflectors in two-dimensional waveguides*, SIAM J. Im. Sci., 2013
- [3] Montjoie user's guide, <http://montjoie.gforge.inria.fr>