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1. Setup

Goal: Image extended scatterers in a terminating waveg-

uide.
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• Waveguide: Homogeneous in Ω−
L , inhomogeneous in Ω+

L.

• O: extended scatterer (typical size ∼ wavelength, λ0).

• vertical array A: N transducers

• Data: Array response matrix Π̂(ω) for the scattered field.

• S: search domain.

2. Preliminaries

The Helmholtz equation is given by

−∆p̂tot(ω, ~x)− k2(~x)p̂tot(ω, ~x) = f̂(ω, ~x), ~x ∈ Ω.

We denote ĜR(~x, ~xs) the Green’s function for the Helmholtz

operator −∆ · −k2·, for a point source, where k is the (real)

wavenumber. In Ω−
L we denote {µn, Xn}n=1,2,... the eigen-

pairs of

X ′′(x) + µX(x) = 0, x ∈ (0, D) and X(0) = X(D) = 0,

and assume ∃ an index M such that it holds in Ω−
L

µM < k2 < µM+1,

so we have the horizontal wavenumbers:

βn =

{√
k2 − µn, 1 ≤ n ≤ M,  propagating modes

i
√
µn − k2, n ≥ M + 1,  evanescent modes

3. Passive Imaging

We consider the passive imaging problem for a point source

placed at ~xs = (zs, xs).
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Our data for imaging is the vector Π̂(~xr, ω),which is the

Green’s function going from ~xs to ~xr:

Π̂(~xr, ω) = ĜR(~xr, ~xs, ω).

Based on phase conjugation, we may write for a single fre-

quency ω, ~xr = (za, x) ∈ A and ~y s ∈ S:

Ipc(~y s) =

∫

A
ĜR(~xs, ~xr)Ĝ

R(~xr, ~y
s) dx,

If we assume that we have an array capable of recording
the field as well as its normal derivative, then we have that

I(~y s) =

∫

A

(
∇ĜR(~xr, ~y

s)ĜR(~xr, ~xs)− ĜR(~xr, ~y
s)∇ĜR(~xr, ~xs)

)
· dS.

where dS is the outward pointing surface element.

For our waveguide, we can prove a Kirhhoff-Helmholtz type

identity [1], given by

∫

A

(
∇ĜR(~y, ~y s)ĜR(~y, ~xs)− ĜR(~y, ~y s)∇ĜR(~y, ~xs)

)
· dS

= ĜR(~xs, ~y
s)− ĜR(~xs, ~y

s),

which, after calculations can be written as

2i

M∑

n=1

βn ĜR
n(za, ~xs) Ĝ

R
n(za, ~y

s) = ĜR(~xs, ~y
s)− ĜR(~xs, ~y

s),

where ĜR
n(za, ~xs) is the projection of the Green’s function on

the propagating modes,

ĜR
n(za, ~xs) =

∫ D

0
ĜR((za, x

′), ~xs)Xn(x
′) dx′.

Let

P̂n =

∫ D

0
Π̂ (~xr, ω)Xn(x) dx, n = 1 . . . ,M,

be the projection of the recorded field on the propagating

modes [2]. In this case P̂n is given by

P̂n =

∫ D

0
ĜR ((za, x), ~xs)Xn(x) dx

(
= ĜR

n(za, ~xs)
)
.

We define our imaging functional Ip as

Ip(~ys) :=
M∑

n=1

βnP̂n Ĝ
R
n(za, ~y

s).

From the Kirchhoff–Helmholtz identity we get

Ip(~ys) =
1

2i

(
ĜR(~ys, ~xs)− ĜR(~ys, ~xs)

)
= Im ĜR(~y s, ~xs).

We consider a source located at ~xs = (380, 100) m and a

single frequency f = 73 Hz. The waveguide has depth

D = 200 m, c0 = 1500 m/s. We have M = 19 propagat-

ing modes, the vertical boundary is at R = 550 m and our

search domain is S = [230, 530]× [0, D].
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4. Active Imaging

For a point scatterer, assuming unit reflectivity on the scat-

terer, the response matrix may be written as

Π̂(~xs, ~xr, ω) = ĜR(~x∗, ~xs, ω)Ĝ
R(~xr, ~x

∗, ω),

and the projected response matrix P̂ is given by

P̂nm =

∫ D

0

∫ D

0

Π̂(~xs, ~xr, ω)Xn(xs)Xm(xr) dxs dxr, n = 1 . . . ,M.

For active imaging we propose the use of

Ia(~y s) :=

M∑

n=1

M∑

m=1

βnβmP̂nm ĜR
n(za, ~y

s) ĜR
m(za, ~y

s).

Using the Kirchhoff–Helmholtz identity we obtain

Ia(~y s) =
(
Im ĜR(~y s, ~x∗)

)2
= (Ip(~y s))2.

We consider a scatterer with the same setup as before.
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5. Resolution analysis

For a homogeneous waveguide, Ip for ~y = (z, x), becomes

Ip(~y) =
1

2

M∑

n=1

1

βn

(
cos βn(z − zs)− cos βn(2R− z − zs)

)
Xn(x)Xn(xs).

We may consider it as a Riemann sum approximation of an
integral which, in turn, can be evaluated analytically. Con-
sidering ~y at the correct range or cross-range, Ip becomes

Ip(~y) ≈
1

16

[(
J0(αℓ)− J0(βℓ)

)
−

(
J0(

√
α2
ℓ + γ2ℓ )− J0(

√
β2
ℓ + γ2ℓ )

)]
,

where for the cross-range, i.e. ~y = (zs, x) and ℓ = x,

αx =
2π(x− xs)

λ
, βx =

2π(x + xs)

λ
, γx =

4π

λ
(R− zs),

and for the range i.e. ~y = (z, xs) and ℓ = z,

αz =
2π

λ
(z − zs), βz =

2π

λ
(2R− z − zs), γz =

4πxs
λ

.

For zs ≪ R, the resolution is defined by J0(a), since ax and

az are much smaller than the other arguments.
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For both range and cross-range, the resolution is λ0/2.

6. SNR issues

Our image has a widely varying SNR, for different frequen-

cies.
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We wish to stabilize our image by using multiple frequen-

cies.

1-D plots in depth (correct range)
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We observe coherent oscillations and high secondary

peaks for the small bandwidth and incoherent oscillations

and lower secondary peaks for the larger bandwidth. We

have a similar behavior in range.

2-D plots
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SNR improves as the bandwidth increases.

7. Extended scatterers

Semicircle (Data computed with Born)
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Disc (Data computed with Montjoie [3])
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Rhombus (Data computed with Montjoie [3])
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