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Εισαγωγή
Το 1844 ο Βέλγος μαθηματικός Eugène Charles Catalan σε ένα

σύντομο σημείωμά του προς το περιοδικό του Aug. Leop. Crelle
ζητά τη δημοσίευση της εικασίας ότι το 8 και το 9 είναι το
μόνο ζεύγος διαδοχικών τέλειων δυνάμεων, «ελπίζο-
ντας ότι ίσως άλλοι θα έχουν την “τύχη” να αποδείξουν».
Ισοδύναμη διατύπωση της εικασίας: Μοναδική λύση της

𝑥𝑛 − 𝑦𝑚 = 1, 𝑥𝑦 ≠ 0, 𝑛,𝑚 ≥ 2,

είναι η (𝑛,𝑚, 𝑥, 𝑦) = (2, 3,±3, 2).
Όπως συνήθως στις εκθετικές Διοφαντικές εξισώσεις, η μελέτη
της παραπάνω εξίσωσης ανάγεται στην περίπτωση πρώτων εκ-
θετών.

𝑥𝑝 − 𝑦𝑞 = 1,
με τους 𝑥, 𝑦 μη μηδενικούς ακέραιους και τους 𝑝, 𝑞 πρώτους.
Οι περιπτώσεις 𝑝 = 2 και 𝑞 = 2 απαιτούν στοιχειώδεις μεθόδους
και μελετήθηκαν από τους Ko Chao και V.A. Lebesgue.
Ιδιαίτερη δυσκολία και ενδιαφέρον παρουσιάζει η περίπτωση όπου
οι 𝑝, 𝑞 είναι και οι δύο περιττοί πρώτοι. Ο Preda Mihăilescu
σε τρία άρθρα του μεταξύ των ετών 2003 και 2006 απέδειξε ότι η
εξίσωση αυτή είναι αδύνατη, αποδεικνύοντας έτσι την εικασία.

Εικόνα 1. Catalan

Οι συνθήκες του Mihăilescu
Ο Mihăilescu απέδειξε τέσσερις πολύ ισχυρές συνθήκες οι οποίες

πρέπει να ικανοποιούνται από τους 𝑥, 𝑦, 𝑝, 𝑞, αν αυτοί είναι λύση της
εξίσωσης.
Αρχικά θα παρουσιάσουμε τις τέσσερις συνθήκες και θα δείξουμε
πόσο απλά προκύπτει το θεώρημα από αυτές.
Θεώρημα (Πρώτη Συνθήκη - Σ1). Αν 𝑥𝑝 − 𝑦𝑞 = 1, τότε

𝑝2 ∣ 𝑦, 𝑞2 ∣ 𝑥, 𝑞𝑝−1 ≡ 1 (mod 𝑝2), 𝑝𝑞−1 ≡ 1 (mod 𝑞2).

Θεώρημα (Δεύτερη Συνθήκη - Σ2). Αν 𝑥𝑝 − 𝑦𝑞 = 1, τότε

min{𝑝, 𝑞} > 11.

Θεώρημα (Τρίτη Συνθήκη - Σ3). Αν 𝑥𝑝 − 𝑦𝑞 = 1, τότε

𝑝 < 4𝑞2 και 𝑞 < 4𝑝2.

Θεώρημα (Τέταρτη Συνθήκη - Σ4). Αν 𝑥𝑝 − 𝑦𝑞 = 1, τότε

𝑝 ≡ 1 (mod 𝑞) ή 𝑞 ≡ 1 (mod 𝑝).

Εικόνα 2. Mihăilescu

Η απόδειξη της εικασίας
Θεώρημα (P. Mihăilescu). Αν οι 𝑝, 𝑞 είναι περιττοί πρώτοι, τότε
η εξίσωση 𝑥𝑝 − 𝑦𝑞 = 1 δεν έχει μη μηδενικές ακέραιες λύσεις.
Λήμμα. Αν (𝑥, 𝑦, 𝑝, 𝑞) είναι λύση της 𝑥𝑝 − 𝑦𝑞 = 1, τότε 𝑝 ≠ 𝑞.
Παρατήρηση. Εφόσον οι 𝑝, 𝑞 στην εξίσωση 𝑥𝑝−𝑦𝑞 = 1 είναι και
οι δύο περιττοί, η εξίσωση γράφεται, επίσης, (−𝑦)𝑞 − (−𝑥)𝑝 = 1.
Συνεπώς, ο ρόλος των ζευγαριών (𝑥, 𝑝) και (𝑦, 𝑞) στην εξίσωση εί-
ναι συμμετρικός. Επομένως, αφού 𝑝 ≠ 𝑞, μπορούμε να υποθέσουμε
𝑝 > 𝑞.
Απόδειξη του Θεωρήματος. Έστω (𝑥, 𝑦, 𝑝, 𝑞) λύση της εξί-
σωσης. Από το Λήμμα, 𝑝 ≠ 𝑞. Από την (Σ4) 𝑝 ≡ 1 (mod 𝑞)
ή 𝑞 ≡ 1 (mod 𝑝). Λόγω συμμετρίας (Παρατήρηση), έστω 𝑝 ≡ 1
(mod 𝑞). Από το Διωνυμικό Θεώρημα έχουμε ότι

𝑝𝑞 = (1 + (𝑝 − 1))𝑞 = 1 +
𝑞

∑
𝑖=1

(𝑞𝑖)(𝑝 − 1)𝑖
⎵⎵⎵⎵⎵⎵⎵

≡0 (mod 𝑞2)

,

άρα
𝑝𝑞 ≡ 1 (mod 𝑞2). (1)

Από τη (Σ1), είναι 𝑝𝑞−1 ≡ 1 (mod 𝑞2), άρα
𝑝𝑞 ≡ 𝑝 (mod 𝑞2). (2)

Συνδυάζοντας τις (1) και (2) έχουμε τελικά 𝑝 ≡ 1 (mod 𝑞2). Από
τη (Σ3), είναι 𝑝 < 4𝑞2 άρα έχουμε τελικά

𝑝 = 1 + 𝑠𝑞2, 𝑠 = 1, 2, 3.
Οι τιμές 𝑠 = 1 και 𝑠 = 3 δίνουν άρτιο 𝑝, οπότε απορρίπτονται, άρα
𝑝 = 1 + 2𝑞2. Από τη (Σ2), ο 𝑞 είναι πρώτος > 3 , άρα 𝑞2 ≡ 1
(mod 3), άρα 𝑝 ≡ 0 (mod 3), άτοπο. □

Οι αποδείξεις των συνθηκών
Κύριο μέρος της εργασίας αυτής αποτέλεσε η λεπτομερής μελέτη

των αποδείξεων των τεσσάρων συνθηκών. Οι αποδείξεις απαιτούν
αρκετά σύνθετα μαθηματικά εργαλεία και εμφανίζουν ιδιαίτερη δυ-
σκολία. Ένα αποτέλεσμα που αποδείχθηκε 40 χρόνια πριν τις ερ-
γασίες του Mihăilescu, το οποίο όμως έχει ενεργό ρόλο στην από-
δειξη των συνθηκών είναι το ακόλουθο θεώρημα και οφείλεται στον
J.W.Cassels.

Θεώρημα (Cassels, 1960). Αν 𝑥𝑝 − 𝑦𝑞 = 1, τότε 𝑝 ∣ 𝑦 και 𝑞 ∣ 𝑥.
Συμβολισμοί
• 𝜁 = 𝜁𝑝 , πρωταρχική 𝑝-ρίζα της μονάδας.
•𝐾 = ℚ(𝜁) και 𝐾+ = ℚ(𝜁 + 𝜁−1).
• ℤ𝐾, ℤ𝐾+ δακτύλιοι των ακεραίων των 𝐾 και 𝐾+ αντίστοιχα.
•𝐺 = Gal(Κ/ℚ) = {𝜎1, 𝜎2,… , 𝜎𝑝−1}, όπου 𝜎𝑘(𝜁) = 𝜁𝑘 και άρα
𝜎𝑝−1 = 𝜄.

•𝐺+ = Gal(𝐾+/ℚ)
•Cl(𝐾), Cl(𝐾+) οι αντίστοιχες ομάδες κλάσεων ιδεωδών.
• ℎ𝑝 ∶= |Cl(𝐾)| και ℎ+

𝑝 ∶= |Cl(𝐾+)|.
Στις αποδείξεις εμφανίζεται μια αλγεβρική δομή η οποία αποτελεί

“συνδυασμό” ενός δακτύλιου και μιας ομάδας. Έστω 𝑅 ένας αντι-
μεταθετικός δακτύλιος με μοναδιαίο στοιχείο και μια πεπεραμένη
πολλαπλασιστική ομάδα 𝐻, όπου 𝐻 = {ℎ1,… , ℎ𝑛}.
Ορίζουμε τον δακτύλιο ομάδας

𝑅[𝐻] = {
𝑛
∑
𝑗=1

𝑟𝑗ℎ𝑗 ∣ 𝑟𝑗 ∈ 𝑅} .

Ο 𝑅[𝐻] εφοδιασμένος με τις “φυσιολογικές” πράξεις είναι ελεύ-
θερο 𝑅-module και δακτύλιος.
Σε ό,τι ακολουθεί 𝑝 > 𝑞 περιττοί πρώτοι και 𝑥, 𝑦 μη μηδενικοί

ακέραιοι ώστε 𝑥𝑝 − 𝑦𝑞 = 1.

Απόδειξη Πρώτης Συνθήκης
Πρόταση 1. Αν 𝑥𝑝 − 𝑦𝑞 = 1, τότε ισχύει η ισοδυναμία 𝑞2 ∣ 𝑥 ⇔
𝑝𝑞−1 ≡ 1 (mod 𝑞2).
Πρόταση 2. Αν το 𝜃 ∈ ℤ[𝐺] μηδενίζει την Cl(𝐾) (δηλαδή
[𝔞]𝜃 = [1] για κάθε ιδεώδες 𝔞 του 𝐾), τότε (1 − 𝜁𝑥)(1−𝜄)𝜃 είναι
𝑞-δύναμη στο 𝐾.
Πρόταση 3. Αν υπάρχει 𝜃 ∈ ℤ[𝐺] που δεν διαιρείται από τον 𝑞
(στον ℤ[𝐺]) και το (1 − 𝜁𝑥)𝜃 είναι 𝑞-δύναμη, τότε 𝑞2 ∣ 𝑥.
Εξαιτίας της Π3 και της συμμετρίας αρκεί να δείξουμε ότι 𝑞2 ∣ 𝑥.

Από τις Π1 και Π2, αρκεί να βρούμε Θ𝑆 ∈ ℤ[𝐺] ώστε το Θ𝑆
να μηδενίζει την Cl(𝐾) και να μην διαιρείται από το 𝑞 στον ℤ[𝐺].
Για την εύρεση του Θ𝑆 χρησιμοποιούμε ένα γνωστό θεώρημα που
οφείλεται στον Stickelberger.
Θεωρούμε το στοιχείο Θ = 1

𝑝 ∑
𝑝−1
𝑎=1 𝑎𝜎−1

𝑎 ∈ ℚ[𝐺] και ορίζουμε το
ιδεώδες του Stickelberger 𝐼𝑠 ∶= Θℤ[𝐺] ∩ ℤ[𝐺]. Τα στοιχεία
του είναι τα ℤ[𝐺]-πολλαπλάσια του Θ που ανήκουν στον ℤ[𝐺].
Θεώρημα (Stickelberger, 1890). Κάθε 𝜃 ∈ 𝐼𝑠 μηδενίζει την
ομάδα κλάσεων Cl(𝐾) του 𝐾.
Από το παραπάνω, είναι εύκολο να δούμε ότι το στοιχείo Θ𝑆 =

∑𝑝−1
𝑎=1 𝑎𝜎−1

𝑎 έχει τις ζητούμενες ιδιότητες και αποδεικνύεται η (Σ1)

Απόδειξη Δεύτερης Συνθήκης
Η (Σ2) αποτελεί αμέσο πόρισμα του ακόλουθου θεωρήματος.

Θεώρημα (Mihăilescu). Αν 𝑥𝑝 − 𝑦𝑞 = 1, τότε 𝑝 ∣ ℎ−
𝑞 και 𝑞 ∣ ℎ−

𝑝 .

Ο αριθμός ℎ−
𝑝 ορίζεται ως το πηλίκο ℎ𝑝/ℎ+

𝑝 .
Λόγω συμμετρίας, έστω 𝑞 ≤ 11. Είναι γνωστό ότι ℎ𝑞 = 1 για

κάθε πρώτο 𝑞 ≤ 19. Επομένως, έχουμε 𝑝 ∤ ℎ−
𝑞 = 1 και άρα από το

παραπάνω θεώρημα έχουμε άτοπο.

Απόδειξη Τρίτης Συνθήκης
Ορισμός. •𝐸 ∶= {𝑢(1 − 𝜁)𝑘 | 𝑢 ∈ 𝑈𝐾, 𝑘 ∈ ℤ}.
• 𝑉 ∶= {𝛼 ∈ 𝐾∗ | 𝛼ℤ𝐾 = 𝔟𝑞𝔭𝑘, 𝔟 κλασματικό ιδεώδες του ℤ𝐾}.
• 𝑆 ∶= 𝑉 /(𝐾∗)𝑞 και συμβολίζουμε με [𝑣] την κλάση του 𝑣 ∈ 𝑉

στην 𝑆.
Συμβολίζουμε με 𝑋 τον μηδενιστή της [𝑥 − 𝜁] ∈ 𝑆 στον ℤ[𝐺].

Ορίζουμε επίσης το 𝐼 = (1−𝜄)𝐼𝑠, το οποίο αποδεικνύουμε ότι μηδε-
νίζει την ομάδα 𝑆. Τέλος, για ένα 𝑓 = ∑𝑝−1

𝑡=1 𝑎𝑡𝜎𝑡 ∈ ℤ[𝐺] ορίζουμε
νόρμα ‖𝑓‖ = ∑𝑝−1

𝑡=1 |𝑎𝑡|.
Η (Σ3) είναι συνέπεια των παρακάτω προτάσεων:

Πρόταση 1. Έστω 𝜃 ∈ 𝑋 ∩ (1 − 𝜄)ℤ[𝐺] μη μηδενικό, 𝛼 ∈ 𝐾∗

ώστε (𝑥− 𝜁)𝜃 = 𝛼𝑞 και ‖𝜃‖ ≤ 3𝑞/(𝑝− 1). Τότε είναι |Arg(𝛼)| > 𝜋
𝑞 ,

όπου Arg(𝑧) ∈ (−𝜋, 𝜋].
Πρόταση 2. Έστω 𝑞 > 4𝑝2. Τότε υπάρχει μη μηδενικό 𝜃 ∈ 𝐼,
με ‖𝜃‖ ≤ 3𝑞/(𝑝 − 1) και |Arg(𝛼)| ≤ 𝜋/𝑞, όπου το 𝛼 ∈ 𝐾∗ είναι
εκείνο για το οποίο έχουμε (𝑥 − 𝜁)𝜃 = 𝛼𝑞.
Λόγω συμμετρίας, έστω 𝑞 > 4𝑝2. Τότε, από την Π2 έχουμε

0 ≠ 𝜃 ∈ 𝐼 με “κατάλληλη” νόρμα ώστε |Arg(𝛼)| ≤ 𝜋/𝑞. Όμως,
το 𝐼 μηδενίζει την 𝑆 και 𝐼 ⊆ (1 − 𝜄)ℤ[𝐺], άρα 𝜃 ∈ 𝑋 ∩ (1− 𝜄)ℤ[𝐺]
και άρα από Π1, είναι |Arg(𝛼)| > 𝜋

𝑞 , άτοπο.

Απόδειξη Τέταρτης Συνθήκης
Για την απόδειξη της τελευταίας συνθήκης ορίζουμε μια “ιδιαί-

τερη” ομάδα 𝑆𝑞 και συμβολίζουμε με 𝑆+ τα στοιχεία της 𝑆 που
είναι αναλλοίωτα από τον 𝜄.
Θεώρημα 1. Έστω ότι 𝑥𝑝−𝑦𝑞 = 1. Τότε, το υπο-module του 𝑆+

που παράγεται από την κλάση [𝑥 − 𝜁]1+𝜄 είναι ελεύθερο, δηλαδή
Ann𝔽𝑞[𝐺+]([𝑥 − 𝜁]1+𝜄) = 0.

Θεώρημα 2. Αν 𝑝 ≢ 1 (mod 𝑞), τότε
Ann𝔽𝑞[𝐺+](𝑆+ ∩ 𝑆𝑞) ≠ 0.

Έστω 𝑝 ≢ 1 (mod 𝑞). Αποδεικνύεται ότι [𝑥 − 𝜁]1+𝜄 ∈ 𝑆+ ∩ 𝑆𝑞,
άρα 0 ≠ Ann𝔽𝑞[𝐺+](𝑆+ ∩ 𝑆𝑞) ⊆ Ann𝔽𝑞[𝐺+]([𝑥 − 𝜁]1+𝜄) = 0, άτοπο
και έχουμε την (Σ4).
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