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Περίληψη
Οι εξισώσεις των Navier-Stokes, στην περίπτωση ασυμπίεστης ροής

διακριτοποιούνται χρησιμοποιώντας μια μέθοδο 2ης τάξης ακρίβειας
για τον χρόνο και το χώρο. Οι εξισώσεις ορμής διακριτοποιούνται πάνω
σε έκκεντρο σχήμα πεπερασμένων διαφορών 2ης τάξης. Η λύση του
γραμμικού συστήματος επιτυγχάνεται με κατάλληλη διαχείριση των
αραιών πινάκων που προκύπτουν από την διακριτοποίηση και χρησι-
μοποιώντας GMRES. Σε κάθε χρονικό βήμα της μεθόδου, η συνθήκη
ασυμπιεστότητας επιβάλλεται στο σύστημα, χρησιμοποιώντας μια το-
πική μέθοδο διόρθωσης της πίεσης και στην συνέχεια ανανέωση της
ταχύτητας, κελί-προς-κελί. Ικανοποιώντας έτσι το διακριτό ανάλογο
της εξίσωσης συνέχειας. Η ακρίβεια και η αποτελεσματικότητα της
προτεινόμενενης μεθόδου ελέγχεται για διάφορα προβλήματα ασυμπί-
εστων ροών.

Εισαγωγή
Η παρούσα εργασία πραγματεύεται την προσομοίωση φυσι-

κών ροών μέσα από μια μαθηματική σκοπιά χρησιμοποιώντας
τις εξισώσεις Navier-Stokes. Μελετώντας αυτές τις εξισώσεις
σε καρτεσιανό πλέγμα χρησιμοποιώντας ένα ημιπεπλεγμένο
αριθμητικό σχήμα. Για την διακριτοποίηση στον χώρο και τον
χρόνο επιλέγεται σχήμα ακρίβειας 2ης τάξης και κατάλληλη
μέθοδο ”διόρθωσης της πίεσης” για την επιβολή της συνθήκης
ασυμπιεστότητας.

H συντηρητική, αδιάστατη μορφή των ασυμπίεστων εξισώ-
σεων Navier-Stokes:
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όπου u = (u, v) είναι το διάνυσμα της ταχύτητας, p η πίεση και
Re ο αριθμός Reynolds με Re = UL

ν όπου U η χαρακτηριστική
ταχύτητα, L το χαρακτηριστικό μήκος και ν το κινηματικό ιξώ-
δες.

Συμβολίζοντας με L(u) τους γραμμικούς όρους της εξίσωσης
(1) και με N (u, p) το μέρος που περιέχει τους μη-γραμμικούς
όρους μαζί με την πίεση,
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∆u, N (u, p) = −∇p− (u · ∇)u (3)

η μορφή που παίρνει η εξίσωση (1) γίνεται:
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Αριθμητική Μέθοδο Επίλυσης

Υπολογιστικό Χωρίο
Έστω Ω := [a, b] × [c, d] ένα καρτεσιανό χωρίο το οποίο στην

συνέχεια υποδιαιρείται σε μικρότερα κελιά Ci,j , οι πλευρές των
οποίων ορίζονται από τα σημεία xi := a + i∆x, i = 0, . . . , imax

και yj := c + j∆y, j = 0, . . . , jmax όπου ∆x := b−a
imax

και ∆y := d−c
jmax

για imax, jmax ∈ N. Τα κέντρα των κελιών ορίζονται ως xi+1
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Σε κάθε κελί Ci,j η πίεση p συμβολίζεται ως pi,j στο κέντρο

των κελιών και έχει συντεταγμένες
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Σχήμα 1: Ανάθεση μεταβλητών πάνω σε έκκεντρο πλέγμα, όπου p και
u = (u, v) είναι οι άγνωστες μεταβλητές. Με • συμβολίζονται οι θέσεις p, με
□ συμβολίζονται οι θέσεις των u και ◦ αυτές των v.

Για την επιβολή 2ης τάξης ακρίβειας στις συνοριακές συνθήκες
που αφορούν το πρόβλημα προστίθεται μια πλασματική σειρά
κελιών στην εξωτερική πλευρά παρακείμενη σε κάθε πλευρά
του φυσικού χωρίου. Με αυτό τον τρόπο το πλέγμα απαρτίζε-
ται από τα κελιά Ci,j με i = 1, . . . , imax+2 και j = 1, . . . , jmax+2.

Χωρική και Χρονική Διακριτοποίηση
Από την σχέση (4) συμβολίζοντας με un+1 και pn+1 τις τιμές

της ταχύτητας και της πίεσης στον n + 1 χρονικό βήμα,
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(5)

εν συνεχεία, χρησιμοποιείται ένα σχήμα 2-τάξης για την δια-
κριτοποίηση ως προς το χρόνο.

∂un+1

∂t
=

3un+1 − 4un + un−1

2∆t
+O(∆t2) (6)

Με παρεμβολή στον μη-γραμμικό όρο N (u, p) χρησιμοποιώ-
ντας τα δύο προηγούμενα χρονικά βήματα προκύπτει,

N n+1 = 2N n −N n−1 +O(∆t2) (7)
Με αντικατάσταση των παραπάνω σχέσεων στην σχέση (5) το

αριθμητικό σχήμα έχει την ακόλουθη ημιπεπλεγμένη μορφή
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∇ · un+1 = 0 (9)
που η πλήρης αναλυτική του μορφή στις x και y διευθύνσεις
έχουν την μορφή,
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Χρησιμοποιώντας πεπερασμένες διαφορές για την διακριτο-
ποίηση των χωρικών παραγώγων που περιέχονται στο παρα-
πάνω σύστημα εξισώσεων (10) και (11)
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Όπως προκύπτει από τις (12) και (13) η λύση των αγνώστων
μεταβλητών un+1 και vn+1 θα δοθεί από την επίλυση των γραμ-
μικών συστημάτων
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Τα στοιχέια των πινάκων Au, Av δίνονται από τις ακόλουθες
σχέσεις,
• al,l =
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όπου στο πίνακα Au ο δείκτης id έχει την τιμή id = imax + 1,
ενώ στο πίνακα Av ο δείκτης id έχει την τιμή id = jmax + 1.

Σχήμα 2: Η μορφή του πίνακα Au για ένα πλέγμα 5× 5.

Συνθήκη Ασυμπιεστότητας
Σε κάθε χρονικό βήμα η συνθήκη ασυμπιεστότητας επιβάλλε-

ται με διόρθωση της πίεσης σε κάθε κελί Ci,j ξεχωριστά, και
εκ νέου υπολογισμό των ταχυτήτων u, v που προκύπτουν από
το γραμμικό σύστημα.
Η νέα τιμή της πίεσης γίνεται:

pnewi,j = poldi,j + (∆p)i,j (15)
και οι ανανεωμένες τιμές των u και v που ικανοποιούν την
συνθήκη ασυμπιεστότητας, προκύπτουν από τις σχέσεις:
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όπου (∆p)i,j το ”κομμάτι” της πίεσης που υπολείπεται για την
διόρθωση της τιμής της και δίνεται από την σχέση:
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όπου Di,j η διακριτή μορφή της εξίσωσης συνέχειας για το κελί
Ci,j, δηλαδή:

Di,j =
uold
i+1

2,j
− uold

i−1
2,j

∆x
+
vold
i,j+1

2

− vold
i,j−1

2

∆y
(18)

Αποτελέσματα

Square Driven Cavity

Σχήμα 3: Το πεδίο ταχυτήτων για πλέγμα 161× 161 και Re = 1000. Τα βέλη
υποδηλώνουν την κατεύθυνση κίνησης της ροής.

Σχήμα 4: Η κατανομή για την u συνιστώσα της ταχύτητας στην κεντρική
κατακόρυφη γραμμή του πλέγματος 161× 161 (αριστερά) και κατανομή για
την v συνιστώσα της ταχύτητας καταμήκος της κεντρικής οριζόντιας γραμ-
μής του πλέγματος (δεξιά), σε σύγκριση με τα αποτελέσματα του Ghia για
Re = 1000.

Oseen Vortex Decay

Σχήμα 5: Διάγραμμα ροής των ταχυτήτων. Γίνονται εμφανείς η διάφορες
ζώνες όπου η ταχύτητα της ροής μειώνεται ξεκινώντας από το κέντρο της
δύνης με φορά προς τα έξω. Η κατεύθυνση της ροής υποδηλώνεται από την
φορά των βελών.

Σχήμα 6: Συσχέτιση του ρυθμού σύγκλισης των σφαλμάτων στην L2 νόρμα
με το slope 2. Στα αριστερά το χωρικό σφάλμα ενώ στα δεξιά το χρονικό
σφάλμα της μεθόδου.

Συμπεράσματα
Στα πλαίσια αυτής της εργασίας,
• εφαρμόστηκε μια πεπλεγμένη μέθοδος με σκοπό την επίλυση
του προβλήματος ασυμπίεστης ροής για τις εξισώσεις των
Navies-Stokes.

• εφαρμόστηκε μέθοδος ανανέωσης της πίεσης σε κάθε κελί
του υπολογιστικού χωρίου με σκοπό την ικανοποίηση της
συνθήκης ασυμπιεστότητας.

• πλεονέκτηματα ως προς ευστάθεια και ταχύτητα σύγκλισης
της μεθόδου λόγω της μορφής του πίνακα.

• τα τελικά αποτελέσματα από τα δυο προβλήματα αναφοράς
ήταν πολύ ακριβή σε σύγκριση με την βιβλιογραφία.


