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Abstract

Throughout this project we work on R with the Lebesgue measure and by the term rectangle we will al-
ways mean rectangle with sides parallel to the coordinate axes. We investigate the interaction between
the covering properties of a basis, the differentiation properties of a basis and the size of the associated
maximal operator. After giving some general results, we focus on the basis R consisting of all the rect-
angles on R? and the strong maximal operator M. This basis differentiates Lp(IR{d), p > 1, but 1t does
not differentiate Ll(Rd). The determining difference between this basis and the one consisting of all
balls (or cubes), i1s that the volume of a ball 1s comparable with its diameter, whereas the volume of a
rectangle can be arbitrary small while its diameter 1s arbitrary large. This 1s the reason why differentia-
tion of L1(RY) fails for R. It is also known that instead of L'(R?), R differentiates the function space
L(1 +1logt L)%t = {f : R? — R? measurable : [ |f|(1+log™ |f|)?~! < +oo}, which in some way is opti-
mal. The purpose of this thesis 1s to give a geometric proof of this assertion, imitating the proof of Lebesgue
differentiation theorem. More specifically, we shall present a suitable covering lemma for rectangles (as a
substitute of Besicovitch covering lemma which fails), which with standard techniques leads to the so called
LlogL inequality for the strong maximal function, by which differentiation of L(1 + log™ L) is easily implied.
Jessen, Marcinkiewicz and Zygmund were the first to prove the LlogL inequality (Note on the differentiability
of multiple integrals, Funda. Math. 25 (1935), 217-34), dominating M by iterates of the Hardy - Littlewood
maximal operator M. However, the desired geometric proof was given 40 years later by A. Cordoba and R.
Fefferman (A geometric proof of the strong maximal theorem, Ann. of Math. 102 (1975), 95-100).

Preliminaries

Basic definitions

* A differentiation basis B = (] B(x), is a family of bounded measurable subsets of RY, with positive mea-

reRY
sure, such that B(x) consists of sets that contain z and in B(x) there are sets with arbitrary small diameter.

B is called Busseman-Feller, if it consists of open setsand z € B € B = B € B(x).

o If B is a differentiation basis, we define the associated maximal operator by M f(z) = sup’%‘ [1fl, if

B
re |J B,Mf(x)=0,otherwise, where the supremum is taken over all B € B(x).
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« We define the upper and lower derivative of | f at x by D([ f,x) = lim SUp 11 [ fand D([ f,z) =
B

lim inf ﬁ [ f respectively, where the limits are taken over B € B(z) when diam(B) — 0. If D([ f,x) =
B

D(| f,x) = f(z) forall f € X and for a.e. =, we say that the associated basis B differentiates X.

* We say that a sublinear operator 7" is of weak type (p, p), if {Tf > A} < (W)p, Vf e LP(RH), X > 0.

Also, we say that T satisfies the LlogL inequality, if |{T'f > A} < [ |—{\|(1 + log™ ‘—{\')d_l, Vf €
L (R%), X > 0. Finaly, we say that T is of strong type (p, p), if T fllp S fllp VS € LP(R%).

loc
* (Strong Besicovitch covering property) Let £ be a measurable subset of R?. If to each z € E we corre-
spond a set S(x) € B(x), then from the family {S(x)} . one can obtain a sequence .S), satisfying:
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(2) Sy, can be distributed into ¢ sequences, each of disjoint sets, where c is an absolute constant.

* (Weak Besicovitch covering property) Let £/ be a measurable subset of RY, If to each = € F we corre-
spond a set S(z) € B(x), then from the family {S5(x)} . one can obtain a sequence .S), satisfying:

WEC | S,

n=1
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2) > x 5 < ¢, where c 1s absolute constant.
n=1

e (Vitali covering property) Let /7 be a measurable subset of R?. If to each z € E we correspond a se-
quence Qp(r) € B(z) such that diamQn(z) — 0, then from the family {Qy(7)},,cN £ One can obtain a

0. @)
sequence S, of disjoint sets, satisfying |F ~. | ] S,| = 0.

n=1

Some general results

Let B= |J B(x) be a differentiation basis and M be the associated maximal operator.
reR?

e M is of weak type (p,p), p > 1 = B differentiates LP(R%). If B is a B-F homothecy invariant basis, then
the converse also holds.

» M is of weak type (p,p), p > 1 <= B satisfies a g-type covering property (this is a Besicovitch-type
covering property where the overlap is small in L9-norm, Z% + % = 1).

e Vitali, w.B. and s.B. covering property —> B differentiates Ll(Rd). If B is a B-F homothecy invariant
basis with |0B| = 0, VB € B, which differentiates L' (R%), then B satisfies the Vitali covering property.

The main theorem

Theorem 1 (Cordoba-Fefferman covering lemma for rectangles). Let { By}, 4 be a family of dyadic rectan-

gles on RY, d > 2, such that | |J Ba| < 4+00. Then, there are Ry, Ry, ..., Ry; € {Ba}oe 4, satisfying:
acA

M
(1) ’ U Ba| 5 ’kL—Jle‘

acA Ny —
(2. Xr, = M
(2) | e= S U Rl
M k=1
U Ry
Sketch of proof

We will say that a sequence (finite or not) of rectangles Iz, satisfies the property Py, if

1
RN | Rl < 51kl vk,
91<k

whereas we will say that ), satisfies the stronger property Po, 1t

1
RN | Ryl < 51t k.
J#k

The proof is by induction on dimension d. We work, equivalently, with the dyadic maximal operator M OCZZ on

R%, where the supremum 1s taken over all dyadic rectangles (cartesian products of dyadic intervals), in order
to take advantage of their net net property, 1.e. if 11 and [» are dyadic intervals, then either they are disjoint,
or one of them 1s contained in the other one.

The case d = 2
Lemma 1. Let By, By, ..., By be dyadic rectangles on RZ. Then one can choose Ri,Ro,....,Rys € {Bj}é-v:l,
satisfying :
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(2) Po property.
Lemma 2. Let Iy, [, ..., I C R be discrete dyadic intervals, such that

1
[j;]k

foreach k =1,2,..., N. Also, set

N
Ap ={x: ZXIk<$) > r+1},
k=1

r=20,1,.... Then,
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To prove Theorem 1 on R?, fix {By},c4. By Lemma 1 there is {Rj}é\il C {Ba}aea, satistying Po

property and (1) of Theorem 1. To prove (2) of Theorem 1, fix 9 € R and consider the xo-sections {R;UQ}]]\i |-
These sections are dyadic intervals and by the net property one can show that they satisfy the hypotheses of
Lemma 2.. Applying Lemma 2 to them, using Fubini’s theorem and then integrating appropriately, we are
done with the overlap condition (2).

Induction step

Lemma 3. Let T’ be a sublinear operator which acts on measurable functtions defined on R such that

’:CGRd_l Tflx)> )\ <c ’i}\‘(1+10g+’_ﬂ)d—2
d—1

R
&

1T flloc < [I.flloo:

for all f € Ll1 ; C(Rd_l) and A > 0, where c is an absolute constant. Then, for each p > 1, T is of weak type
(p, p) with

d— 2\ qd— 1
2 e R Tf(z) > )| < (czdﬂ?—?(m)d er—l)ﬁ / fIP,
Rd—1
forall f € LI (R and X > 0.
Lemma 3, an interpolation argument and a duality argument yield the following auxiliary lemma.
Lemma 4. Assume that the (d — 1)-dimensional strong maximal operator M gl—l satisfies the LlogL inequality
Then, given a finite family of rectangles R1, Ro, ..., Ry C RA-1 satisfying the 'P1 property, one has
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Assume that Theorem 1 is valid on R?~!. Applying Lemma 1 to { B, } ac A» ordering the R;’s appropriately,
we extract { [ } jj\i . C {Ba}qe 4 satistying P property and (/) of Theorem 1. Applying Fubini’s theorem and
using the net property of the orthogonal projections { Fy(12;) =1 into d-axis (which clearly are dyadic inter-
vals), one deduces that the (d-1)-dimensional dyadic rectangles {(Rj)g}é\i L (R) =1{T € R (z,2) € R)

have the P; property. Moreover, the induction hypothesis implies that Mj_l satisfies the assumptions of
Lemma 4. Consequently, Lemma 4 and an application of Fubini’s theorem yield the overlap condition (2),
which completes the proof.
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