

The LlogL inequality for the strong maximal function

Keramidas Vasileios

Advisor: Mitsis Themis

Department of Mathematics and Applied Mathematics

University of Crete

Abstract

Throughout this project we work on \mathbb{R}^d with the Lebesgue measure and by the term rectangle we will always mean rectangle with sides parallel to the coordinate axes. We investigate the interaction between the covering properties of a basis, the differentiation properties of a basis and the size of the associated maximal operator. After giving some general results, we focus on the basis \mathcal{R} consisting of all the rectangles on \mathbb{R}^d and the strong maximal operator M_s . This basis differentiates $L^p(\mathbb{R}^d)$, $p > 1$, but it does not differentiate $L^1(\mathbb{R}^d)$. The determining difference between this basis and the one consisting of all balls (or cubes), is that the volume of a ball is comparable with its diameter, whereas the volume of a rectangle can be arbitrary small while its diameter is arbitrary large. This is the reason why differentiation of $L^1(\mathbb{R}^d)$ fails for \mathcal{R} . It is also known that instead of $L^1(\mathbb{R}^d)$, \mathcal{R} differentiates the function space $L(1 + \log^+ L)^{d-1} = \{f : \mathbb{R}^d \rightarrow \mathbb{R}^d \text{ measurable} : \int |f|(1 + \log^+ |f|)^{d-1} < +\infty\}$, which in some way is optimal. The purpose of this thesis is to give a geometric proof of this assertion, imitating the proof of Lebesgue differentiation theorem. More specifically, we shall present a suitable covering lemma for rectangles (as a substitute of Besicovitch covering lemma which fails), which with standard techniques leads to the so called *LlogL* inequality for the strong maximal function, by which differentiation of $L(1 + \log^+ L)$ is easily implied. Jessen, Marcinkiewicz and Zygmund were the first to prove the *LlogL* inequality (*Note on the differentiability of multiple integrals*, *Funda. Math.* 25 (1935), 217-34), dominating M_s by iterates of the Hardy - Littlewood maximal operator M . However, the desired geometric proof was given 40 years later by A. Cordoba and R. Fefferman (*A geometric proof of the strong maximal theorem*, *Ann. of Math.* 102 (1975), 95-100).

Preliminaries

Basic definitions

- A differentiation basis $\mathcal{B} = \bigcup_{x \in \mathbb{R}^d} B(x)$, is a family of bounded measurable subsets of \mathbb{R}^d , with positive measure, such that $B(x)$ consists of sets that contain x and in $B(x)$ there are sets with arbitrary small diameter. \mathcal{B} is called *Busseman-Feller*, if it consists of open sets and $x \in B \in \mathcal{B} \Rightarrow B \in B(x)$.
- If \mathcal{B} is a differentiation basis, we define the associated maximal operator by $Mf(x) = \sup \frac{1}{|B|} \int_B |f|$, if $x \in \bigcup_{B \in \mathcal{B}(x)} B$, $Mf(x) = 0$, otherwise, where the supremum is taken over all $B \in \mathcal{B}(x)$.
- We define the upper and lower derivative of $\int f$ at x by $\overline{\mathcal{D}}(\int f, x) = \limsup \frac{1}{|B|} \int_B f$ and $\underline{\mathcal{D}}(\int f, x) = \liminf \frac{1}{|B|} \int_B f$ respectively, where the limits are taken over $B \in \mathcal{B}(x)$ when $\text{diam}(B) \rightarrow 0$. If $\overline{\mathcal{D}}(\int f, x) = \underline{\mathcal{D}}(\int f, x) = f(x)$ for all $f \in X$ and for a.e. x , we say that the associated basis \mathcal{B} differentiates X .
- We say that a sublinear operator T is of weak type (p, p) , if $|\{Tf > \lambda\}| \lesssim (\|f\|_p)^p$, $\forall f \in L^p(\mathbb{R}^d)$, $\lambda > 0$. Also, we say that T satisfies the *LlogL* inequality, if $|\{Tf > \lambda\}| \lesssim \int \frac{|f|}{\lambda} (1 + \log^+ \frac{|f|}{\lambda})^{d-1}$, $\forall f \in L^1_{\text{loc}}(\mathbb{R}^d)$, $\lambda > 0$. Finally, we say that T is of strong type (p, p) , if $\|Tf\|_p \lesssim \|f\|_p$, $\forall f \in L^p(\mathbb{R}^d)$.
- **(Strong Besicovitch covering property)** Let E be a measurable subset of \mathbb{R}^d . If to each $x \in E$ we correspond a set $S(x) \in \mathcal{B}(x)$, then from the family $\{S(x)\}_{x \in E}$ one can obtain a sequence S_n satisfying:
 - $E \subset \bigcup_{n=1}^{\infty} S_n$
 - S_n can be distributed into c sequences, each of disjoint sets, where c is an absolute constant.
- **(Weak Besicovitch covering property)** Let E be a measurable subset of \mathbb{R}^d . If to each $x \in E$ we correspond a set $S(x) \in \mathcal{B}(x)$, then from the family $\{S(x)\}_{x \in E}$ one can obtain a sequence S_n satisfying:
 - $E \subset \bigcup_{n=1}^{\infty} S_n$
 - $\sum_{n=1}^{\infty} \chi_{S_n} \leq c$, where c is absolute constant.
- **(Vitali covering property)** Let E be a measurable subset of \mathbb{R}^d . If to each $x \in E$ we correspond a sequence $Q_n(x) \in \mathcal{B}(x)$ such that $\text{diam} Q_n(x) \rightarrow 0$, then from the family $\{Q_n(x)\}_{n \in \mathbb{N}, x \in E}$ one can obtain a sequence S_n of disjoint sets, satisfying $|E \setminus \bigcup_{n=1}^{\infty} S_n| = 0$.

Some general results

Let $\mathcal{B} = \bigcup_{x \in \mathbb{R}^d} B(x)$ be a differentiation basis and M be the associated maximal operator.

- M is of weak type (p, p) , $p > 1 \implies \mathcal{B}$ differentiates $L^p(\mathbb{R}^d)$. If \mathcal{B} is a B-F homothecy invariant basis, then the converse also holds.
- M is of weak type (p, p) , $p > 1 \iff \mathcal{B}$ satisfies a q -type covering property (this is a Besicovitch-type covering property where the overlap is small in L^q -norm, $\frac{1}{p} + \frac{1}{q} = 1$).
- Vitali, w.B. and s.B. covering property $\implies \mathcal{B}$ differentiates $L^1(\mathbb{R}^d)$. If \mathcal{B} is a B-F homothecy invariant basis with $|\partial B| = 0$, $\forall B \in \mathcal{B}$, which differentiates $L^1(\mathbb{R}^d)$, then \mathcal{B} satisfies the Vitali covering property.

The main theorem

Theorem 1 (Cordoba-Fefferman covering lemma for rectangles). *Let $\{B_\alpha\}_{\alpha \in A}$ be a family of dyadic rectangles on \mathbb{R}^d , $d \geq 2$, such that $|\bigcup_{\alpha \in A} B_\alpha| < +\infty$. Then, there are $R_1, R_2, \dots, R_M \in \{B_\alpha\}_{\alpha \in A}$, satisfying:*

- $|\bigcup_{\alpha \in A} B_\alpha| \lesssim |\bigcup_{k=1}^M R_k|$
- $\int e^{\left(\sum_{k=1}^M \chi_{R_k}\right)^{\frac{1}{d-1}}} \lesssim |\bigcup_{k=1}^M R_k|$

Sketch of proof

We will say that a sequence (finite or not) of rectangles R_n satisfies the property \mathcal{P}_1 , if

$$|R_k \cap \bigcup_{j < k} R_j| \leq \frac{1}{2} |R_k|, \forall k,$$

whereas we will say that R_n satisfies the stronger property \mathcal{P}_2 , if

$$|R_k \cap \bigcup_{j \neq k} R_j| \leq \frac{1}{2} |R_k|, \forall k.$$

The proof is by induction on dimension d . We work, equivalently, with the dyadic maximal operator M_d^d on \mathbb{R}^d , where the supremum is taken over all dyadic rectangles (cartesian products of dyadic intervals), in order to take advantage of their net *net property*, i.e. if I_1 and I_2 are dyadic intervals, then either they are disjoint, or one of them is contained in the other one.

The case $d = 2$

Lemma 1. *Let B_1, B_2, \dots, B_N be dyadic rectangles on \mathbb{R}^2 . Then one can choose $R_1, R_2, \dots, R_M \in \{B_j\}_{j=1}^N$, satisfying :*

- $|\bigcup_{j=1}^N B_j| \lesssim |\bigcup_{j=1}^M R_j|$
- \mathcal{P}_2 property.

Lemma 2. *Let $I_1, I_2, \dots, I_N \subset \mathbb{R}$ be discrete dyadic intervals, such that*

$$|\bigcup_{I_j \subset I_k} I_j| \leq \frac{1}{2} |I_k|,$$

for each $k = 1, 2, \dots, N$. Also, set

$$A_r = \{x : \sum_{k=1}^N \chi_{I_k}(x) \geq r + 1\},$$

$r = 0, 1, \dots$. Then,

$$|A_r| \lesssim \frac{1}{2^r} |\bigcup_{k=1}^N I_k|.$$

To prove **Theorem 1** on \mathbb{R}^2 , fix $\{B_\alpha\}_{\alpha \in A}$. By **Lemma 1** there is $\{R_j\}_{j=1}^M \subset \{B_\alpha\}_{\alpha \in A}$, satisfying \mathcal{P}_2 property and (1) of Theorem 1. To prove (2) of Theorem 1, fix $x_2 \in \mathbb{R}$ and consider the x_2 -sections $\{R_j^{x_2}\}_{j=1}^M$. These sections are dyadic intervals and by the net property one can show that they satisfy the hypotheses of **Lemma 2**. Applying Lemma 2 to them, using Fubini's theorem and then integrating appropriately, we are done with the overlap condition (2).

Induction step

Lemma 3. *Let T be a sublinear operator which acts on measurable functions defined on \mathbb{R}^{d-1} , such that*

$$|x \in \mathbb{R}^{d-1} : Tf(x) > \lambda| \leq c \int_{\mathbb{R}^{d-1}} \frac{|f|}{\lambda} (1 + \log^+ \frac{|f|}{\lambda})^{d-2}$$

$$\|Tf\|_\infty \leq \|f\|_\infty,$$

for all $f \in L^1_{\text{loc}}(\mathbb{R}^{d-1})$ and $\lambda > 0$, where c is an absolute constant. Then, for each $p > 1$, T is of weak type (p, p) with

$$|x \in \mathbb{R}^{d-1} : Tf(x) > \lambda| \leq \left(c 2^{d+p-2} \left(\frac{d-2}{p-1} \right)^{d-2} e^{p-1} \right) \frac{1}{\lambda^p} \int_{\mathbb{R}^{d-1}} |f|^p,$$

for all $f \in L^1_{\text{loc}}(\mathbb{R}^{d-1})$ and $\lambda > 0$.

Lemma 3, an interpolation argument and a duality argument yield the following auxiliary lemma.

Lemma 4. *Assume that the $(d-1)$ -dimensional strong maximal operator M_s^{d-1} satisfies the *LlogL* inequality. Then, given a finite family of rectangles $R_1, R_2, \dots, R_N \subset \mathbb{R}^{d-1}$ satisfying the \mathcal{P}_1 property, one has*

$$\int_{\bigcup_{k=1}^N R_k} e^{\left(\sum_{k=1}^N \chi_{R_k}\right)^{\frac{1}{d-1}}} \lesssim |\bigcup_{k=1}^N R_k|.$$

Assume that **Theorem 1** is valid on \mathbb{R}^{d-1} . Applying **Lemma 1** to $\{B_\alpha\}_{\alpha \in A}$, ordering the R_j 's appropriately, we extract $\{R_j\}_{j=1}^M \subset \{B_\alpha\}_{\alpha \in A}$ satisfying \mathcal{P}_2 property and (1) of Theorem 1. Applying Fubini's theorem and using the net property of the orthogonal projections $\{P_d(R_j)\}_{j=1}^M$ into d -axis (which clearly are dyadic intervals), one deduces that the $(d-1)$ -dimensional dyadic rectangles $\{(R_j)_d^{x_2}\}_{j=1}^M$ ($(R_j)_d^{x_2} = \{\bar{x} \in \mathbb{R}^{d-1} : (\bar{x}, x) \in R_j\}$) have the \mathcal{P}_1 property. Moreover, the induction hypothesis implies that M_d^{d-1} satisfies the assumptions of **Lemma 4**. Consequently, **Lemma 4** and an application of Fubini's theorem yield the overlap condition (2), which completes the proof.

References

1. M. De Guzman. *Real Variable Methods in Fourier Analysis*, North-Holland Math. Stud. 46, North-Holland, Amsterdam (1981).
2. M. De Guzman. *Differentiation of Integrals in \mathbb{R}^n* , Lecture Notes in Math. 481, Springer (1975).
3. A. Cordoba and R. Fefferman. *A geometric proof of the strong maximal theorem*, Ann. of Math. 102 (1975), 95-100.
4. A. Cordoba. *On the Vitali covering properties of a differentiation basis*, Studia Math. 57 (1976), 91-95.
5. J. Duoandikoetxea. *Fourier Analysis*, American Mathematical Society, (2001).
6. T. Mitsis. *The weighted weak type inequality for the strong maximal function*, J. Fourier Anal. Appl. 12 (2006), 645-652.
7. A. A. Almirall, C. C. Gomez, H. J. Sanchez, C. M. Murillo, A. Quilis and P. R. Baraut. *Maximal averaging operators: from geometry to boundedness through duality* (2019).