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Abstract
Throughout this project we work on Rd with the Lebesgue measure and by the term rectangle we will al-
ways mean rectangle with sides parallel to the coordinate axes. We investigate the interaction between
the covering properties of a basis, the differentiation properties of a basis and the size of the associated
maximal operator. After giving some general results, we focus on the basis R consisting of all the rect-
angles on Rd and the strong maximal operator Ms. This basis differentiates Lp(Rd), p > 1, but it does
not differentiate L1(Rd). The determining difference between this basis and the one consisting of all
balls (or cubes), is that the volume of a ball is comparable with its diameter, whereas the volume of a
rectangle can be arbitrary small while its diameter is arbitrary large. This is the reason why differentia-
tion of L1(Rd) fails for R. It is also known that instead of L1(Rd), R differentiates the function space
L(1 + log+L)d−1 = {f : Rd → Rd measurable :

∫
|f |(1 + log+ |f |)d−1 < +∞}, which in some way is opti-

mal. The purpose of this thesis is to give a geometric proof of this assertion, imitating the proof of Lebesgue
differentiation theorem. More specifically, we shall present a suitable covering lemma for rectangles (as a
substitute of Besicovitch covering lemma which fails), which with standard techniques leads to the so called
LlogL inequality for the strong maximal function, by which differentiation of L(1 + log+L) is easily implied.
Jessen, Marcinkiewicz and Zygmund were the first to prove the LlogL inequality (Note on the differentiability
of multiple integrals, Funda. Math. 25 (1935), 217-34), dominating Ms by iterates of the Hardy - Littlewood
maximal operator M . However, the desired geometric proof was given 40 years later by A. Cordoba and R.
Fefferman (A geometric proof of the strong maximal theorem, Ann. of Math. 102 (1975), 95-100).

Preliminaries

Basic definitions
• A differentiation basis B =

⋃
x∈Rd

B(x), is a family of bounded measurable subsets of Rd, with positive mea-

sure, such that B(x) consists of sets that contain x and in B(x) there are sets with arbitrary small diameter.
B is called Busseman-Feller, if it consists of open sets and x ∈ B ∈ B ⇒ B ∈ B(x).

• If B is a differentiation basis, we define the associated maximal operator by Mf (x) = sup 1
|B|

∫
B
|f |, if

x ∈
⋃

B∈B(x)
B, Mf (x) = 0, otherwise, where the supremum is taken over all B ∈ B(x).

• We define the upper and lower derivative of
∫
f at x by D(

∫
f, x) = lim sup 1

|B|
∫
B
f and D(

∫
f, x) =

lim inf 1
|B|

∫
B
f respectively, where the limits are taken over B ∈ B(x) when diam(B) → 0. If D(

∫
f, x) =

D(
∫
f, x) = f (x) for all f ∈ X and for a.e. x, we say that the associated basis B differentiates X .

• We say that a sublinear operator T is of weak type (p, p), if |{Tf > λ}| ≲
(∥f∥p

λ

)p, ∀f ∈ Lp(Rd), λ > 0.

Also, we say that T satisfies the LlogL inequality, if |{Tf > λ}| ≲
∫ |f |

λ

(
1 + log+

|f |
λ )d−1, ∀f ∈

L1
loc(R

d), λ > 0. Finaly, we say that T is of strong type (p, p), if ∥Tf∥p ≲ ∥f∥p, ∀f ∈ Lp(Rd).

• (Strong Besicovitch covering property) Let E be a measurable subset of Rd. If to each x ∈ E we corre-
spond a set S(x) ∈ B(x), then from the family {S(x)}x∈E one can obtain a sequence Sn satisfying:

(1) E ⊂
∞⋃
n=1

Sn

(2) Sn can be distributed into c sequences, each of disjoint sets, where c is an absolute constant.

• (Weak Besicovitch covering property) Let E be a measurable subset of Rd. If to each x ∈ E we corre-
spond a set S(x) ∈ B(x), then from the family {S(x)}x∈E one can obtain a sequence Sn satisfying:

(1) E ⊂
∞⋃
n=1

Sn

(2)
∞∑
n=1

χSn
≤ c, where c is absolute constant.

• (Vitali covering property) Let E be a measurable subset of Rd. If to each x ∈ E we correspond a se-
quence Qn(x) ∈ B(x) such that diamQn(x) → 0, then from the family {Qn(x)}n∈N,x∈E one can obtain a

sequence Sn of disjoint sets, satisfying |E ∖
∞⋃
n=1

Sn| = 0.

Some general results
Let B =

⋃
x∈Rd

B(x) be a differentiation basis and M be the associated maximal operator.

• M is of weak type (p, p), p > 1 =⇒ B differentiates Lp(Rd). If B is a B-F homothecy invariant basis, then
the converse also holds.

• M is of weak type (p, p), p > 1 ⇐⇒ B satisfies a q-type covering property (this is a Besicovitch-type
covering property where the overlap is small in Lq-norm, 1p +

1
q = 1).

• Vitali, w.B. and s.B. covering property =⇒ B differentiates L1(Rd). If B is a B-F homothecy invariant
basis with |∂B| = 0, ∀B ∈ B, which differentiates L1(Rd), then B satisfies the Vitali covering property.

The main theorem
Theorem 1 (Cordoba-Fefferman covering lemma for rectangles). Let {Bα}α∈A be a family of dyadic rectan-
gles on Rd, d ≥ 2, such that |

⋃
α∈A

Bα| < +∞. Then, there are R1, R2, . . . , RM ∈ {Bα}α∈A, satisfying:

(1) |
⋃

α∈A
Bα| ≲ |

M⋃
k=1

Rk|

(2)
∫

M⋃
k=1

Rk

e
(
M∑
k=1

χRk
)

1
d−1

≲ |
M⋃
k=1

Rk|.

Sketch of proof
We will say that a sequence (finite or not) of rectangles Rn satisfies the property P1, if

|Rk ∩
⋃
j<k

Rj| ≤
1

2
|Rk|, ∀k,

whereas we will say that Rn satisfies the stronger property P2, if

|Rk ∩
⋃
j ̸=k

Rj| ≤
1

2
|Rk|, ∀k.

The proof is by induction on dimension d. We work, equivalently, with the dyadic maximal operator Md
d on

Rd, where the supremum is taken over all dyadic rectangles (cartesian products of dyadic intervals), in order
to take advantage of their net net property, i.e. if I1 and I2 are dyadic intervals, then either they are disjoint,
or one of them is contained in the other one.

The case d = 2

Lemma 1. Let B1, B2, . . . , BN be dyadic rectangles on R2. Then one can choose R1, R2, . . . , RM ∈ {Bj}Nj=1,
satisfying :

(1) |
N⋃
j=1

Bj| ≲ |
M⋃
j=1

Rj|

(2) P2 property.

Lemma 2. Let I1, I2, . . . , IN ⊂ R be discrete dyadic intervals, such that

|
⋃

Ij⫋Ik

Ij| ≤
1

2
|Ik|,

for each k = 1, 2, . . . , N . Also, set

Ar = {x :

N∑
k=1

χIk(x) ≥ r + 1},

r = 0, 1, . . . . Then,

|Ar| ≲
1

2r
|
N⋃
k=1

Ik|.

To prove Theorem 1 on R2, fix {Bα}α∈A. By Lemma 1 there is {Rj}Mj=1 ⊂ {Bα}α∈A, satisfying P2

property and (1) of Theorem 1. To prove (2) of Theorem 1, fix x2 ∈ R and consider the x2-sections {Rx2
j }Mj=1.

These sections are dyadic intervals and by the net property one can show that they satisfy the hypotheses of
Lemma 2.. Applying Lemma 2 to them, using Fubini’s theorem and then integrating appropriately, we are
done with the overlap condition (2).

Induction step
Lemma 3. Let T be a sublinear operator which acts on measurable functtions defined on Rd−1, such that

|x ∈ Rd−1 : Tf (x) > λ| ≤ c

∫
Rd−1

|f |
λ

(
1 + log+

|f |
λ

)d−2

&

∥Tf∥∞ ≤ ∥f∥∞,

for all f ∈ L1
loc(R

d−1) and λ > 0, where c is an absolute constant. Then, for each p > 1, T is of weak type
(p, p) with

|x ∈ Rd−1 : Tf (x) > λ| ≤
(
c2d+p−2(d− 2

p− 1

)d−2
ep−1

) 1

λp

∫
Rd−1

|f |p,

for all f ∈ L1
loc(R

d−1) and λ > 0.

Lemma 3, an interpolation argument and a duality argument yield the following auxiliary lemma.

Lemma 4. Assume that the (d− 1)-dimensional strong maximal operator Md−1
s satisfies the LlogL inequality

Then, given a finite family of rectangles R1, R2, . . . , RN ⊂ Rd−1 satisfying the P1 property, one has

∫
N⋃
k=1

Rk

e
(
N∑
k=1

χRk
)

1
d−1

≲ |
N⋃
k=1

Rk|.

Assume that Theorem 1 is valid on Rd−1. Applying Lemma 1 to {Bα}α∈A, ordering the Rj’s appropriately,
we extract {Rj}Mj=1 ⊂ {Bα}α∈A satisfying P2 property and (1) of Theorem 1. Applying Fubini’s theorem and
using the net property of the orthogonal projections {Pd(Rj)}Mj=1 into d-axis (which clearly are dyadic inter-
vals), one deduces that the (d-1)-dimensional dyadic rectangles {(Rj)

x
d}

M
j=1 ((R)xd = {x̄ ∈ Rd−1 : (x̄, x) ∈ R)

have the P1 property. Moreover, the induction hypothesis implies that Md−1
d satisfies the assumptions of

Lemma 4. Consequently, Lemma 4 and an application of Fubini’s theorem yield the overlap condition (2),
which completes the proof.
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