
A Tour on Spectral Graph Theory and Expander Graphs

Master’s Thesis
Ioannis Kakatelis

Supervisor: Mihalis Kolountzakis
Department of Mathematics and Applied Mathematics, University of Crete, Heraklion, Greece

Abstract

In the first part of this thesis we study the tools from spec-
tral graph theory and some graph theoretic results that are
obtained through the eigenvalues of the Laplacian and Ad-
jacency matrix of a graph. Furthermore we investigate the
eigenvalues of different families of graphs such as: Cayley
graphs of groups, binary trees and paths but also the con-
vergence rate of random walks on graphs. In the second
part we focus on a specific class of graphs that is called
Expander graphs. We prove the existence of the family of
magical graphs with high probability and their applications
to probability theory, random walks and complexity theory.

1. Spectral Graph Theory

The Adjacency matrix of a graph G with n vertices can be
represented as a symmetric n × n matrix where the non-
diagonal elements aij represents the number of edges from
vertex i to vertex j

Definition 1.1 (Adjacency matrix [2]) The adjacency ma-
trix MG of a graph G = (V,E), whose entries MG(a, b) are
given by:

MG(a, b) =

{
1 if (a, b) ∈ E

0 otherwise.

In case G is a weighted graph with an edge (a, b) having
weight wa,b, we set MG(a, b) = wa,b, also an important thing
to notice is that we index the rows and columns of the ma-
trix by vertices instead of numbers.

Definition 1.2 (Laplacian Matrix) The Laplacian Matrix LG
of a graph G = (V,E) is defined as: LG = DG−MG, where
DG,MG are the degree matrix and the adjacency matrix of
the graph G respectively. We can also define the entries
LG(i, j) as:

LG(i, j) =


deg(vi) if i = j

−1 if (i, j) ∈ E

0 otherwise

Lemma 1.3 Let G = (V,E,w) be a weighted graph, and let
0 = λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of its Laplacian
matrix L. Then we have that λ2 > 0 ⇐⇒ G is connected.

Lemma 1.4 For a weighted graph G with n vertices, we de-
fine:

dave =
∑

a d(a)
n and dmax = maxa d(a).

A graph is called also k-colorable if it can be colored using
only k colors, usually we often identify these k colors with
integers from the set {1, . . . , k}, so a k-coloring of a graph
is a function f : {1, 2, . . . , k} → V (G) such that f (a) ̸= f (b)
for all (a, b) ∈ E.
We can see also below a graph that is 3-colorable.

Theorem 1.5 (Wilf’s Theorem)

χ(G) ≤ ⌊µ1⌋ + 1

2. Generalized hypercubes

To generalize the hypercube, we will now consider again
the Cay(Γ, S) over the additive group Γ = (Z/2Z)d as be-
fore but with a different set of generators in contrast to the
definition of hypercube. The vertex set of the graph will be
VΓ = {0, 1}d mod 2.

Each generator now g1, g2, . . . , gk belongs to the same
group. As g + g = 0 mod 2 for all generators g ∈ {0, 1}d,
we can observe that the set of generators is closed under
negation. Let now define G to be the Cayley graph with ver-
tex set VG = {0, 1}d and with edge set EG = {x, x + gj, x ∈
VG, 1 ≤ j ≤ k}. For each b ∈ {0, 1}d, we can define a
function ψb : VG → R such that ψb(x) = (−1)b

Tx.

Lemma 2.1 For every b ∈ {0, 1}d the vector ψb is a Lapla-
cian matrix eigenvector corresponds to the eigenvalue:

k −
∑k
i=1(−1)b

Tgi

But now what can we say if the set of generators is ran-
dom an with random means to choose the set of generators
{g1, g2, . . . , gk} uniformly at random, where k = cd, c > 0 is
a multiple constant of the dimension, then we can obtain a
good approximation of the complete graph.

Theorem 2.2 Let {x1, x2, . . . , xk} be independent {±1} ran-
dom variables with zero mean. Then for all t > 0, we have:

P (|k − λb| ≥ t) = P (|k − (k −
∑k
i=1(−1)b

Tgi)| ≥ t) =

P (
∑k
i=1(−1)b

Tgi)| ≥ t) = P (|
∑
i xi| ≥ t) ≤ 2 · e−

t2

2k .

Theorem 2.3 With high probability, all the nonzero eigen-
values of the generalized hypercube differ from k by at
most:

k
√

2
c

where k = cd

3. Inequalities for eigenvalues of graphs

Lemma 3.1 Consider the following approximation for
graphs, (n − 1) · Pn ⪰ G1,n, where Pn is the path graph
from vertex 1 to n and G1,n is the graph with just one edge
(1, n).

A lower bound on the complete binary tree:

λ2(Tn) ≥ 1
(n−1)·log2(n)

There is also an improved version of the previous inequality:

Lemma 3.2
λ2(Tn) ≥

1

2n

4. Expander graphs

Expander graphs[1] have been widely used to solve prob-
lems in different mathematical domains such as number
theory and Complexity theory. To begin our exploration into
expander graphs we will state a problem that its solution
need a special class of expander graphs that is called mag-
ical graphs.
Let F be a finite field and A to be a linear transformation
over F. The question now is that we would like to build a
circuit which computes the transformation x → Ax. Each
gate of the circuit computes addition or multiplication.

Conjecture 4.1 (Valiant’s Conjecture) Every super concen-
trator graph must have greater than n edges and this im-
plies that every circuit that computes a super regular matrix
must have greater than n gates

Let G = (L,R,E) to be a two-sided bipartite graph on n
vertices on each side (n on the left side and n on the right
side). Lets denote with L to be the set of all vertices that are
belong to the left side and similarly with R to be the vertices
of the right side, also we assume that every left vertex in L
has d neighbors on the right side R so every vertex on the
left side has the same degree that is d.
We will name that G, to be a (d, n)-magical graph if it has
the following properties:
• For every subset of vertices S ⊆ L such that |S| ≤ n

3d =⇒
|Γ(S)| ≥ |S| · d4

• For every subset of vertices S ⊆ L such that n
3d < |S| ≤

n
2 =⇒ |Γ(S)| ≥ |S| + n

3d

with Γ(S) we denote the set of neighbors of vertices in S in
the graph G.
Lemma 4.2 For every d ≥ 8 and sufficiently large n, there
exists a (d, n) magical graph.

Lemma 4.3 The expander mixing lemma For every subset
S, T ⊆ V it holds:

||E(S, T )− d|S||T |
n

| ≤ λ ·
√

|S| · |T |

Theorem 4.4 (Alon-Boppana Bound) In every d-regular
graph G it holds that:

λ ≥ 2
√
d− 1− on(1)
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