ROBUST PENALIZED METHODS FOR THE ESTIMATION OF ARMA MODELS

Introduction

ARMA models play a pivotal role in modern time-series analysis. A major chal-
lenge in this field is the computational complexity, especially when dealing with
high true ARMA orders and periodic processes. To tackle this issue, we identify
optimal subset ARMA models by employing adaptive Lasso regression [6] and
variants, including adaptive Elastic Net and LAD Lasso. The above mentioned
penalized estimators, are compared against stepwise model building procedures
[4], In a series of simulation experiments, which mimic the scenarios presented in
[2]. Finally, we conduct simulation experiments to evaluate, a Maximum Entropy
Bootstrap Lasso scheme which is a new promising model selection method, [3].

ARMA Models

Assumethat{Y¢:t =1,2,..., T} is adiscrete and equally-spaced sample from
a weakly stationary, homoskedastic process Y; and the collection from a Gaussian
white noise process of equal size {¢¢ : t =1,2,..., T}, then an ARMA model, is
formulated as:

Yy =01Y¢_1+ -+ ¢th_p + 60161+ + Hqst_q + €t (1)

Finite order parameters p, q € N quantify the strength that past information has
on prediction. Another expression of an ARMA model is through the use of the
backshift operator B, where BKY, = Y:_1. An ARMA(p, q) is expressed as:

&,(B)Y; = Oq(B)et. 2)

where ®,(B)=1—-¢1B—---—¢pBP is the autoregressive operator and
OqB)=1+0;B+ -+ 03B denotes the moving average operator.

Subset ARMA Selection

This work focuses on regularization methods for subset ARMA selection and es-
timation. The ARMA(p, q) model can be expressed as a conventional regres-
siony = XS +¢; lety =[ym,...,yT|" denote the time series of interest and
e =[em,...,eT]T the residuals of an initial autoregressive model. The explana-
tory part of the model is based on the matrix X, which is shown below.
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The main steps of the Hannan & Rissanen’s [3] algorithm are described as fol-
lows. First, an AR(n) is estimated in order to obtain residuals ¢ = Z}‘:O Ay t—js
with ag = 1. The order n of the previous model can be chosen by minimizing
the AIC criterion. Second, an Adaptive Lasso estimator is used to compute the
unknown coefficients S.

The Adaptive Lasso proceeds in two steps: i) coefficient specific weights w are
constructed are constructed by Least Squares, Ridge or Lasso regression of y on
X, i) weights are combined with the penalty term in the Lasso estimator and the
optimal At can be identified with a criterion, such as AIC and BIC.

P+q
SapLasso(N) = argmin g [ly - XBl5+ A wilBilt (4)
i=1

Subset ARMA selection can be based on alternative penalized estimators; one
of those the Adaptive LAD Lasso, which is designed to optimize performance in
terms of the mean absolute error (MAE).
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Monte Carlo Experiments

The empirical performance of Lasso-type Subset ARMA selection [2] is examined through
simulations. Furthermore, the conventional model building procedures are examined. The
set of experiments use series with sample sizes of 120, 240 and 360 to evaluate the perfor-

mance for the aforementioned techniques within 1000 replications.
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Fig. 1: This box-plots depict estimation of orders p and ¢ of simulated Gaussian ARMA process of length n = {360, 600} for
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Model II: Yt — 0.8}"5—1 - O-7Yt—6 + 0.56yt_7 =t +0.8ci_1+0.7ci_6 + 0.56;_7.

The simulations showed that Adaptive LASSO and Adaptive Elastic Net performed sim-
ilarly and could identify more frequently the true Data Generating Mechanism (DGM), for
large sample sizes. Methodologies such as Adaptive LAD Elastic Net though, could cap-
ture more often the true DGM, when contaminated data were considered. The stepwise

procedures, were not able to identify the true model.

Maximum Entropy Bootstrap Lasso

The algorithm generates samples from a uniform uninformative distribution, while trying to
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THTHIHI 0 O 0 40 -
R33EBRTL&AAELR S

maximize entropy under constrains. Analogously then to [1], a screening step follows;

I. a Lasso, Elastic Net or other penalized estimator is fitted in each bootstrap sample,

Il. appropriate At is chosen based on minimization of information criteria,

lii. the variable inclusion frequencies are recorded and

Iv. variables with small inclusion frequency are excluded.

Finally, the procedure contains fitting an arima model with fixed parameters ¢ and 6, which
have been obtained from the screening step. The final solution path is defined by the esti-
mated coefficients obtained, when a information criterion used for the selection of the best

model among candidates.

Metrics
Shrinkage Method Information Criterion n
A esd(A) T + esd(+) esd(-)
120 0.60 (0.59)  0.10 (0.10)  0.69 (0.74) 040 (0.41) 0.10 {(0.10) 0.06 (0.05) 0.09 (0.08)
BIC 240 056 (0.57) 0,06 (0.06) 097 (0.94) 044 (0.43) 0.06 (0.06) 0.01 (0.01) 0.03 (0.03)
360  0.55 (0.55) 0,06 (0.05) 1.00 {100} 045 (0.45) 0.05 (0.05) 0.00 (0.00) 0.02 (0.00)
LASSO
120 0.53 (0.53) 0.07 (0.06) 091 (091 047 (0.47) 007 (0.06) 0.02 (0.02) 0.06 (0.05)
AIC 240 051 (0.51) 0,04 (0.00) 100 (0.053) 049 (0.98) 0.04 (0.49) 0.00 (0.05) 0.01 (0.01)
360 050 (0.50) 0,04 (0.04) 100 (L0O0) 050 (0.50)  0.04 (0.04) 0.00 (0.00) 0.01 (0.01)
120 0.59 (0.58) 0.10 (D.09) 0.62 (0.70) 0.41 (0.42) 0.10 (0.09) 0.06 (0.05) 0.07 (0.08)
BIC 240 057 (0.57) 0.06 (0.05) 092 (0.94) 043 (0.43) 0.06 (0.05) 0.01 (0.01) 0.04 {0.03)
360 0.58 (0.56) 0.06 (0.05) 0.97 (1.00) 042 (0.44) 0.06 (0.05) 0.00 (0.00) 0.02 (0.01)
LAD-LASSO
120 0.54 (0.52) 007 (0.04) 080 (0.85) 046 (0.48) 0.07 (0.04) 0.04 (0.03) 0.07 (0.06)
AlC 240 0.54 (0.54) 0,04 (0.04) 092 (0.96) 046 (0.46) 0.04 (0.04) 0.01 (0.00) 0.04 (0.02)
360 055 (0.55) 0.04 (0.04) 096 (0.98) 045 (0.45) 0.04 (0.04) 0.01 (0.00) 0.03 (0.02)

Fig. 2: This table captures the empirical performance of LASSO and LAD LASSO for Model II:
yi — 0.8yt 1 — 0.7yt ¢+ 0.56y; 7 = ¢ + 0.85¢_1 + 0.7¢¢_¢ + 0.56¢_7. Metric A denotes the probability of picking correctly all

significant variables; T presents the relative frequencies of picking the correct model; "-" reports the false negative rates (FNR) and

+" the false positive rates (FPR). The values in blue color denote the performance when handling contaminated data.
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Application

ARMA models are powerful tools for modeling and forecasting time series data in
a wide range of applications. The figures below depict selected results, regard-
Ing one-step ahead forecasts and predictive intervals for daily measurements of
solar irradiance. The performance of the best six methodologies are presented.
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Subset ARMA that standed out. It managed to compete the stepwise models.
ME Bootstrap penalization techniques performed much better than the majority
of Subset ARMA variants. The best one was the LAD Elastic Net.
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Fig. 4: The plots depict the forecasts and predictive intervals of the stepwise models; ARIMA and ADAM

respectively.
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Fig. 5: The plots present the forecasts and predictive intervals of the worst and best methodology; ME Bootstrap
LASSO and ME Bootstrap LAD Elastic Net, respectively.
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