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1 ΕΙΣΑΓΩΓΗ

Σύμφωνα με το σενάριο του πληθωριστικού σύμπαντος το υλικό περιέχομενο

στο πολύ πρώιμο σύμπαν μπορεί να μοντελοποιηθεί από ένα βαθμωτό πεδίο φ

με ένα δυναμικό V (φ). Ο πληθωρισμός μπορεί να ερμηνευτεί φυσικά μέσω του
τανυστή ενέργειας ορμής του βαθμωτού πεδίου που είναι ισοδύναμος με ένα

τέλειο ρευστό με πυκνότητα ενέργειας ρ και πίεση p, οι οποίες δίνονται από
τους τύπους:

ρ = −1

2
∂µϕ∂µϕ+ V (ϕ) p = −1

2
∂µϕ∂µϕ− V (ϕ) (1.1)

Ανάμεσα στους επιστήμονες που μελέτησαν το διαστελλόμενο σύμπαν είναι ο

Friedmann, Robertson, Walker και Lemaitre, οι οποίοι ανεξάρτητα κατέλη-
ξαν σε ένα μοντέλο για να ποσοτικοποιήσουν ένα διαστελλόμενο σύμπαν. Αυτό

το μοντέλο καλείται FLRW Σύμπαν. Αυτό που το FLRW Σύμπαν πρότεινε

είναι ένα διαστελλόμενο, ομογενές και ισοτροπικό χωροχρόνο. Αυτές θα είναι

και δύο από τις υποθέσεις μας:

Ισοτροπία: Σε μεγάλες κλίμακες το σύμπαν φαίνεται το ίδιο προς όλες τις

κατευθύνσεις. Δεν υπάρχει προτιμώμενη κατεύθυνση.

Ομοιογένεια: Σε μεγάλες κλίμακες το σύμπαν εμφανίζεται το ίδιο σε όλες

τις τοποθεσίες. Δεν υπάρχει προτιμώμενη τοποθεσία.

Η FLRW μετρική είναι:

ds2 = −dt2 + α2(t)

[
dr2

1 + κr2
+ r2(dθ2 + sin2θdϕ2)

]
Η συνολική συμπεριφορά των κοσμολογικών μοντέλων βαθμωτού πεδίου με

πολύ σκληρά τοιχώματα δυναμικού διερευνάται μέσω του απλού παραδείγματος

ενός εκθετικά απότομου δυναμικού. Διαπιστώνεται ότι οι λύσεις παρουσιάζουν

μία μη τετριμμένη ταλαντωτική συμπεριφορά στην προσέγγιση μίας αρχικής

χωροχρονικής ιδιομορφίας. Αυτή η συμπεριφορά μπορεί να ερμηνευτεί ως ο-

φειλόμενη στην αδυναμία του βαθμωτού πεδίου να διασχίσει τα τοιχώματα του

απότομου δυναμικού. Ο σκοπός του σεμιναρίου είναι να κατανοήσουμε τι συμ-

βαίνει στο σύμπαν όταν το βαθμωτό πεδίο φ έχει ένα πολύ απότομο δυναμικό

και συγκεκριμένα να αποδείξουμε ότι κάτι τέτοιο δεν αποτρέπει την δημιουργία

κοσμικής μοναδικότητας και ορίζοντα σωματιδίων.
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Υποθέτουμε ότι το σύμπαν είναι χωρικά επίπεδο, δηλαδή κ = 0, και κάνο-
ντας αλλαγή συντεταγμένων η μετρική μας παίρνει την μορφή:

ds2 = −dt2 + α2(t)
3∑

i=1

(dxi)2

Δηλαδή ο μετρικός τανυστής παίρνει την μορφή:

gµν = diag(−1, α2(t), α2(t), α2(t)) (1.2)

Εδώ α(t) καλείται συντελεστής κλίμακας και καθορίζει πως οι μεγάλης κλίμακας
αποστάσεις στο διάστημα αλλάζουν με το χρόνο. Μία από τις σημαντικότερες

ιδιότητες του συντελεστή κλίμακας είναι ότι εξαρτάται μόνο από τον χρόνο και

καθώς γυρίζουμε πίσω στον χρόνο τελικά μηδενίζεται.

Χρησιμοποιούμε τις εξισώσεις πεδίου Einstein :

Gµν = 8πGTµν − Λgµν

όπου Gµν είναι ο τανυστής Einstein, Tµν είναι ο τανυστής ενέργειας ορμής και
Λ είναι η κοσμολογική σταθερά. Από τον ορισμό του τανυστή Einstein και
παίρνοντας 8πG = 1 και Λ = 0 έχουμε ότι η παραπάνω εξίσωση γίνεται:

Rµν −
1

2
Rgµν = Tµν (1.3)

όπου Rµν είναι ο τανυστής καμπυλότητας Ricci και R είναι η βαθμωτή καμπυ-
λότητα. Για να προσδιορίσουμε τον τανυστή Ricci και το βαθμωτό Ricci, τα
οποία είναι απαραίτητα για τον υπολογισμό των εξισώσεων πεδίου του Einstein
για ένα ομογενές και ισοτροπικό σύμπαν, πρέπει πρώτα να υπολογίσουμε τα

σύμβολα Christoffel της μετρικής FRLW που δίνονται από:

Γl
ji =

1

2
glm(∂jgmi + ∂igmj − ∂mgij) όπου i, j, l = 0, 1, 2, 3

Ευτυχώς η FRLW μετρική είναι διαγώνια οπότε η πλειονότητα των συμβόλων
Christoffel θα είναι συμμετρικά ή μηδενικά. Αφού υπολογισθούν τα σύμ-

βολα αυτά, μπορεί να προσδιοριστεί και ο τανυστής Riemann, ο οποίος δίνεται
από:

Rl
kji = ∂iΓ

l
kj − ∂jΓ

l
ki + Γm

kjΓ
l
mi − Γm

kiΓ
l
mj

Στην πραγματικότητα μας ενδιαφέρουν μόνο οι συνιστώσες του τελεστήRiemann
που έχουν τον ίδιο κορυφαίο δείκτη με τον μέσο κάτω. Αυτές οι συνιστώσες

είναι αρκετές για να υπολογίσουν τον τανυστή Ricci. Συγκεκριμένα, οι μόνες
συνιστώσες Ricci που διαφέρουν από το μηδέν είναι:

R00 = −3
α̈

α
R11 = R22 = R33 = αα̈ + 2α̇2
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Τέλος παίρνουμε την βαθμωτή καμπυλότητα:

R = gikRik = 6
α̈

α
+ 6(

α̇

α
)2 (1.4)

όπου gik είναι η αντίστροφη μετρική.
Η πρώτη από τις τρεις εξισώσεις εξέλιξης που διέπουν την αλληλεπίδραση ενός

γενικού βαθμωτού πεδίου με την μετρική που χρησιμοποιούμε προκύπτει από

την 00-συνιστώσα των εξισώσεων πεδίου του Einstein:

R00 −
1

2
Rg00 = T00 ⇒ −3

α̈

α
− 1

2

[
6

α2
(aα̈ + α̇2)

]
· (−1) = ρ⇒ 9

α̇2

α2
= 3ρ

Ορίζουμε K = 3 α̇
α
, το οποίο ερμηνεύεται και ως ο ρυθμός διαστολής του χωρι-

κού στοιχείου όγκου v = α3
. Παρατηρούμε επίσης ότι αφού έχουμε ομογενές

ϕ = ϕ(t), οι τύποι 1.1 για την ενεργειακή πυκνότητα και την πίεση σε ένα
τέλειο ρευστό γίνονται:

ρ =
1

2
ϕ̇2 + V (ϕ) p =

1

2
ϕ̇2 − V (ϕ) (1.5)

Οπότε αντικαθιστώντας τα παραπάνω προκύπτει ότι η πρώτη εξίσωση είναι:

K2 = 3V (ϕ) +
3

2
ϕ̇2

(1.6)

Γνωρίζουμε ότι ο τανυστής ενέργειας ορμής του τέλειου ρευστού δίνεται

από τον τύπο:

Tµν = (ρ+ p)uµuν + pgµν

όπου uν = (1, 0, 0, 0) είναι η τετραταχύτητα. Χρησιμοποιώντας, λοιπόν, το
παραπάνω υπολογίζουμε την δεύτερη εξίσωση, η οποία προέρχεται από το ίχνος

των εξισώσεων πεδίου του Einstein που δίνεται από:

Rµνg
µν − 1

2
Rgµνg

µν = Tµνg
µν ⇒ Rµ

µ −
1

2
Rδµµ = T µ

µ ⇒ −R = −ρ+ 3p

Αντικαθιστώντας τις εξισώσεις (1.4) και (1.5) αλλά και εφαρμόζοντας την

(1.6) παίρνουμε ότι η δεύτερη εξίσωση είναι :

K̇ = −3

2
ϕ̇2

(1.7)

Η τρίτη εξίσωση προκύπτει αν παραγωγίσουμε την πρώτη εξίσωση και αντικα-

ταστήσουμε την δεύτερη εξίσωση:

ϕ̈ = −Kϕ̇− V ′(ϕ) (1.8)

Εναλλακτικά για να καταλήξουμε στην εξίσωση (1.8) μπορούμε να χρησιμοποι-

ήσουμε την τοπική διατήρηση της ενεργειακής ορμής δηλαδή ∇µT
µν = 0.
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΄Αρα συνολικά έχουμε τις δύο εξισώσεις :

ϕ̈ = −Kϕ̇− V ′(ϕ) K̇ = −3

2
ϕ̇2

(1.9)

με την εξίσωση περιορισμού:

K2 = 3V (ϕ) +
3

2
ϕ̇2

(1.10)

Η γενική λύση για το άμαζο βαθμωτό πεδίο, δηλαδή θέτοντας στις παραπάνω

εξισώσεις V = 0, είναι :

K =
1

t
ϕ = ±

√
2

3
ln
t

c
(1.11)

Υποθέτουμε τώρα ότι κοντά στην μοναδικότητα η λύση του άμαζου βαθμωτού

πεδίου αποτελεί μία καλή προσέγγιση. Δηλαδή χρησιμοποιούμε την (1.11) ως

προσέγγιση της λύσης για αυθαίρετο V στο όριο t→ 0. Αντικαθιστώντας την
(1.11) στην (1.10) καταλήγουμε:

1

t2
=

1

t2
+ V

(
±
√

2

3
ln
t

c

)
+ h

όπου h υποδηλώνει όρους μεγαλύτερης τάξης ως προς t. Για να είναι αυτή η
έκφραση συνεπής θα πρέπει να ισχύει:

lim
t→0

t2V

(
±

√
2

3
ln
t

c

)
= 0 ⇒ lim

ϕ→+
−∞

e−
√
6|ϕ|V (ϕ) = 0

΄Αρα αν το V (ϕ) αποκλίνει πιο αργά από το e
√
6|ϕ|
όταν |ϕ| → ∞ τότε κοντά στο

Big Bang το V μπορεί να αγνοηθεί και άρα οι λύσεις κοντά στην μοναδικότητα
προσεγγίζουν ασυμπτωτικά την λύση του άμαζου βαθμωτού πεδίου. Αν τώρα

το δυναμικό είναι πιο απότομο από
√
6|ϕ| τότε αυτό δεν μπορεί να αγνοηθεί και

επηρεάζει την εξέλιξη κοντά στην μοναδικότητα.
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2 ΤΟ ΜΟΝΤΕΛΟ ΚΑΙ ΔΥΝΑΜΙΚΕΣ

ΕΞΙΣΩΣΕΙΣ

Το απλούστερο παράδειγμα ενός τέτοιου δυναμικού είναι εκείνο της μορφής:

V (ϕ) = αeλϕ + βe−µϕ

όπου α,β,λ,μ είναι θετικές σταθερές. Εμείς θα περιοριστούμε στην περίπτωση

που α = β = 1 και λ = µ και άρα:

V (ϕ) = eλϕ + e−λϕ
(2.1)

Η ανάλυση για το πιο γενικό δυναμικό είναι παρόμοια και τα συμπεράσματα

ουσιαστικά ίδια. Αυξάνοντας το λ θα μπορέσουμε να διερευνήσουμε το πως

αλλάζει η συμπεριφορά του συστήματος καθώς το δυναμικό γίνεται ολοένα και

πιο απότομο.

Εισάγουμε τώρα ένα νέο σύστημα συντεταγμένων:

x =
1

K
και y =

√
3

2

ϕ̇

K
(2.2)

και μία νέα χρονική συντεταγμένη

τ = ln v(t) + τ0 (2.3)

όπου v = α3
είναι το χωρικό στοιχείο όγκου και τ0 είναι μία σταθερά. Η τ

είναι καλά ορισμένη (αφού v αύξουσα). Επίσης παρατηρούμε ότι v → 0 αν και
μόνο αν K → ∞ οπότε από τον ορισμό του τ προκύπτει ότι K → ∞ καθώς
τ → −∞. Παραγωγίζοντας την (2.3) και χρησιμοποιώντας από τον ορισμό του
Κ ότι K = v̇

v
προκύπτει ότι

d
dt
= K d

dτ
.

΄Αρα έχουμε ότι:

dx

dt
=

1

K

d

dτ
(
1

K
) =

K̇

K3
= xy2

dy

dτ
=

1

K

d

dt
(

√
3

2

ϕ̇

K
) =

√
3

2

K(−Kϕ̇− V ′(ϕ)) + 3
2
ϕ̇3

K3
= −y−3αx2(e

√
6αϕ−e−

√
6αϕ)+y3

dϕ

dτ
=

1

K
ϕ̇ =

√
2

3
y
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Σε όρους λοιπόν αυτών των συντεταγμένων, οι εξισώσεις (1.9) γράφονται

πλέον ως ένα δυναμικό σύστημα:
dx
dτ

= y2x
dy
dτ

= −y − 3αx2(e
√
6αϕ − e−

√
6αϕ) + y3

dϕ
dτ

=
√

2
3
y

(2.4)

όπου α = λ√
6
, ενώ η εξίσωση περιορισμού γίνεται:

y2 + 3x2(e
√
6αϕ + e−

√
6αϕ) = 1 (2.5)

Για να απλοποιήσουμε και άλλο το σύστημα ορίζουμε τις μεταβλητές:

p =
√
3e−

√
3
2
αϕx και q = y (2.6)

και τότε η εξίσωση περιορισμού γράφεται ως

p2 + q2 = 1− p2e2
√
6αϕ

(2.7)

ενώ το δυναμικό σύστημα (2.4) μετατρέπεται σε{
dp
dτ

= −apq + pq2

dq
dτ

= q3 + αq2 − q − α + 2αp2
(2.8)

Η διπλή αλλαγή του συστήματος συντεταγμένων αποσκοπεί στην μετατροπή

του αρχικού μας συστήματος σε ένα δισδιάστατο πλήρως αυτόνομο δυναμικό

σύστημα με συμπαγή χώρο φάσης, καθώς παρατηρούμε ότι όλες οι φυσικές

τροχιές βρίσκονται στο εσωτερικό του μοναδιαίου δίσκου δεξιά από τον άξονα

q. Δηλαδή ο χώρος φάσης είναι Ω = {(p, q) : p2 + q2 < 1, p > 0}. Το
σύνορο του χωρίου είναι προφανώς μία κλειστή καμπύλη που αποτελείται από

την ένωση του λείου τόξου ∂Ω1 = {(p, q) : p2 + q2 = 1, p > 0} και του
ευθύγραμμου τμήματος ∂Ω2 = {(p, q) : p = 0, |q| ≤ 1}.
Θα δείξουμε τώρα ότι το ∂Ω αντιστοιχεί στο άπειρο της διαστολής Κ. Πράγματι,
ορίζουμε την συνάρτηση H(p, q) = p2(1−p2− q2), η οποία είναι θετική παντού
στο Ω και μηδενίζεται ταυτοτικά στο ∂Ω. Επίσης, από την εξίσωση περιορισμού
και τον ορισμό του p προκύπτει ότι

H(p, q) = 9x4 = 9 · 1

K4

και άρα το ζητούμενο.
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Παραγωγίζοντας τώρα την Η ως προς τ έχουμε:

dH

dτ
= 36x3

dx

dτ
= 36x4y2 = 4Hq2 ≥ 0 (2.9)

ατο εσωτερικό του Ω. Συγκεκριμένα, είναι θετική παντού στο εσωτερικό του

Ω εκτός όπου q = 0. Επιπλέον, παρατηρούμε ότι dH
dτ

= 0 στο σύνορο όπου
H = 0 και άρα το σύνορο είναι αναλλοίωτη πολλαπλότητα.

Επειδή ο χώρος φάσης Ω είναι συμπαγής, κάθε τροχιά πρέπει να έχει ένα ο-

ριακό σύνολο προς το παρελθόν. ΄Ομως, δείξαμε ότι η Η είναι γνησίως αύξουσα

και άρα στο εσωτερικό του Ω, όπου H > 0, έχουμε ότι η Η αυξάνει μονότονα
για τ → +∞ και άρα μειώνεται μονότονα για τ → −∞. ΄Αρα οποιοδήποτε
οριακό σημείο πρέπει να έχει

dH
dτ

= 0. Επομένως, όλα τα οριακά σύνολα πρέπει
να είναι υποσύνολα είτε του συνόρου είτε του q = 0. Από το δυναμικό σύστη-
μα, βέβαια, προκύπτει ότι το μοναδικό υποσύνολο του q = 0 είναι το σημείο
ισορροπίας pd = ( 1√

2
, 0). Το pd, όμως, είναι τοπικό μέγιστο της Η. Οπότε, α-

φού η Η είναι αύξουσα, καμία τροχιά δεν μπορεί να πηγαίνει ασυμπτωτικά προς

το pd στο παρελθόν. ΄Αρα τα οριακά σύνολα προς το παρελθόν βρίσκονται στο
σύνορο. Με το ίδιο επιχείρημα καταλήγουμε ότι όλες οι τροχιές, με εξαίρεση

αυτές που βρίσκονται στο σύνορο, πηγαίνουν ασυμπτωτικά στο pd στο μέλλον.

Το pd λέμε ότι αντιστοιχεί στον de Sitter χωροχρόνο με σταθερή διαστολή
Κ. Πράγματι, από την εξίσωση περιορισμού έχουμε ότι στο pd ισχύει ϕ = 0
και άρα από τον ορισμό του p συνεπάγεται ότι K =

√
6. Να θυμίσουμε ότι ο

de Sitter χωροχρόνος είναι μία λύση των πεδίων εξισώσεων Einstein, όπου
το σύμπαν διαστέλλεται εκθετικά με σταθερό ρυθμό.

Συνοψίζοντας, δείξαμε ότι σχεδόν όλες οι λύσεις ξεκινούν κοντά στο ∂Ω και
καθώς τ → +∞ προσεγγίζουν το σημείο pd. Θα αναλύσουμε, στην συνέχεια,
την συμπεριφορά του συστήματος πάνω και κοντά στο σύνορο.
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3 Η ΣΥΜΠΕΡΙΦΟΡΑ ΤΟΥ ΣΥΣΤΗΜΑ-

ΤΟΣ ΚΟΝΤΑ ΣΤΟ ΣΥΝΟΡΟ

Λύνοντας τις παρακάτω εξισώσεις:

dp

dτ
= 0 ⇒ −αpq + pq2 = 0

dq

dτ
= 0 ⇒ q3 + αq2 − q − α + 2αp2 = 0

βλέπουμε ότι υπάρχουν το πολύ 4 σημεία ισορροπίας που βρίσκονται στο

σύνορο ∂Ω, τα p+ = (0, 1), p− = (0,−1), p1 = (
√
1− α2, α),

p2 = (0,−α). Παρατηρούμε ότι τα p1, p2 υπάρχουν ως διακριτά σημεία ισορ-
ροπίας στο σύνορο μόνο όταν α < 1. ΄Αρα για α ≥ 1 τα p+, p− είναι τα μόνα
σημεία ισορροπίας. Για να ερευνήσουμε την συμπεριφορά κοντά στα p+, p−
γραμμικοποιούμε τις εξισώσεις κοντά σε αυτά τα σημεία. Μετά από πράξεις,

προκύπτει ότι το γραμμικοποιημένο σύστημα γύρω από το σημείο p+ είναι :{
dp
dτ

= (1− α)p
dq
dτ

= 2(1 + α)(q − 1)

και οι λύσεις είναι αντίστοιχα p = p0e
(1−α)τ q = 1 − δ0e

2(1+α)τ
όπου p0, δ0

είναι θετικές σταθερές. Παρόμοια το γραμμικοποιημένο σύστημα γύρω από το

σημείο p− είναι: {
dp
dτ

= (1 + α)p
dq
dτ

= 2(1− α)(q + 1)

και οι λύσεις είναι αντίστοιχα p = p0e
(1+α)τ q = −1 + δ0e

2(1−α)τ
όπου p0, δ0

είναι θετικές σταθερές.

Θα εξετάσουμε πρώτα την περίπτωση όπου α < 1. Σε αυτή την περίπτω-
ση, παρατηρούμε ότι τα p+, p− είναι υπερβολικά σημεία, αφού ο Ιακωβιανός
πίνακας της γραμμικοποίησης στο κάθε σημείο ισορροπίας δεν έχει ιδιοτιμές με

μηδενικά πραγματικά μέρη. Συγκεκριμένα, επειδή για α < 1 οι ιδιοτιμές του
πίνακα είναι θετικές πραγματικές , τα p+. p− είναι ασταθείς κόμβοι. Από θεώρη-
μα Hartman Grobman συνεπάγεται ότι η τροχιακή δομή του δυναμικού συ-
στήματος σε μία γειτονιά του υπερβολικού σημείου ισορροπίας είναι τοπολογικά

ισοδύναμη με την τροχιακή δομή του γραμμικοποιημένου δυναμικού συστήμα-

τος. Αυτό σημαίνει ότι υπάρχει μία αντιστρέψιμη απεικόνιση που απεικονίζει

το ένα διάγραμμα φάσης πάνω στο άλλο διατηρώντας τον προσανατολισμό των

τροχιών. ΄Αρα τα σημεία ισορροπίας p+, p− είναι ασταθείς κόμβοι και για το
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μη γραμμικό σύστημα όταν α < 1 . Αντίστοιχα γραμμικοποιώντας το σύστη-
μα γύρω από τα p1, p2 θα δούμε ότι τα p1, p2 είναι σαγματικά σημεία, αφού
ο αντίστοιχος Ιακωβιανός πίνακας στα σημεία αυτά έχει δύο πραγματικές ετε-

ρόσημες ιδιοτιμές. Οπότε υπάρχει μία ασταθής και μία ευσταθής πολλαπλότητα.

Επίσης, έχουμε δείξει ότι όλες οι φυσικές λύσεις πλησιάζουν ασυμπτωτικά το

σημείο pd στο μέλλον. Να σημειώσουμε εδώ ότι το pd είναι ευσταθής σπείρα
αφού ο αντίστοιχος Ιακωβιανός πίνακας στο σημείο αυτό έχει ιδιοτιμές με πραγ-

ματικό αρνητικό μέρος.

Σχήμα 1:

Οπότε, με εξαίρεση τις δύο λύσεις που είναι παρελθοντικά ασυμπτωτικές

προς τα p1, p2, καθώς και την στάσιμη λύση pd, όλες οι άλλες φυσικές λύσεις
πρέπει να προσεγγίζουν ασυμπτωτικά είτε το p+ είτε το p− καθώς τ → −∞.
(Δες Σχήμα 1)

Λαμβάνοντας υπόψιν, από τις λύσεις του γραμμικοποιημένου συστήματος

γύρω από τα σημεία p+, p−, ότι το 1− q2 φθίνει εκθετικά στο μηδέν καθώς το
τ → −∞ τότε από την (2.9) συνεπάγεται ότι H(τ) = H0e

4τ
. Με άλλα λόγια

όσο πλησιάζουμε το σύνορο, οι λύσεις συμπεριφέρονται σαν να ικανοποιούν

αυτή την εκθετική μορφή. ΄Αρα:
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H(τ) = H0e
4τ ⇒ 9x4 = H0e

4τ ⇒ x = x0e
τ

Χρησιμοποιώντας την σχέση
d
dt

= K d
dτ
παίρνουμε μία πρώτης τάξης έκφραση

για το t:
t = x0e

τ

Παρατηρούμε ότι t → 0 καθώς τ → −∞ , γεγονός που δείχνει ότι τα p+, p−
αντιστοιχούν σε ιδιομορφίες του χωροχρόνου. Χρησιμοποιώντας τους ορισμούς

των x και q προκύπτει ότι η ασυμπτωτική λύση για το Κ και το ϕ̇ στην γειτονιά
του t = 0 είναι:

x =
1

K
και ϕ̇ = ±

√
2

3
· 1
t
⇒ ϕ = ±

√
2

3
ln
t

c

Αυτό είναι προφανώς η γενική λύση για το άμαζο βαθμωτό πεδίο. Οπότε

δείξαμε ότι όταν α < 1, δηλαδή όταν λ <
√
6, το δυναμικό V δεν είναι σημαντι-

κό κοντά στην ιδιομορφία, το οποίο είναι ακριβώς αυτό που περιμέναμε από την

ανάλυση που είχαμε κάνει στην προηγούμενη ενότητα για δυναμικά που τείνουν

στο άπειρο πιο αργά από e
√
6ϕ
.

Το επόμενο βήμα είναι να δούμε τι συμβαίνει όταν α ≥ 1. ΄Οπως δείξαμε
και στην αρχή, σε αυτή την περίπτωση το δυναμικό γίνεται αρκετά απότομο για

να πούμε ότι η λύση με V = 0 είναι συνεπής ως ασυμπτωτική λύση. Εμείς για
λόγους ευκολίας θα υποθέσουμε ότι α > 1 αλλά στην ουσία για α = 1 τα χα-
ρακτηριστικά των λύσεων είναι ουσιαστικά τα ίδια. Το απότομο του δυναμικού

αλλάζει ριζικά την συμπεριφορά του συστήματος κοντά στην ιδιομορφία.

Τα μόνα σημεία ισορροπίας που διαθέτει το σύστημα για α > 1 είναι τα
p+, p− και pd . ΄Ομως, στην συγκεκριμένη περίπτωση τα p+, p− είναι σαγματικά
σημεία γιατί αν πάρουμε τον αντίστοιχο Ιακωβιανό πίνακα στα σημεία αυτά θα

έχει δύο ετερόσημες πραγματικές ιδιοτιμές. Επομένως, η μοναδική λύση που

είναι παρελθοντικά ασυμπτωτική προς το p− είναι η μη φυσική τροχιά γ1, η
οποία εκκινεί από το p− όταν τ = −∞ και συνεχίζει αριστερόστροφα κατά

μήκος του ∂Ω1 φτάνοντας στο p+ όταν τ = +∞. Αντίστοιχα η μοναδική λύση
που είναι παρελθοντικά ασυμπτωτική προς το p+ είναι η μη φυσική τροχιά γ2,
η οποία εκκινεί από το p+ όταν τ = −∞ και συνεχίζει κατά μήκος του ∂Ω2

φτάνοντας στο p− όταν τ = +∞. Η γ1 και η γ2 μαζί σχηματίζουν μία κλειστή
ετεροκλινική τροχιά. (Δες Σχήμα 2)
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Σχήμα 2:

Να θυμίσουμε ότι είχαμε ορίσει την συνάρτηση H(p, q) = p2(1 − p2 − q2)
και είχαμε δείξει ότι

dH
dτ

= 4Hq2 ≥ 0 και άρα η Η είναι αύξουσα προς το μέλλον
και άρα η Η φθίνει προς το παρελθόν. Επειδή H > 0 στο εσωτερικό του Ω
και μηδενίζεται στο σύνορο έχουμε ότι H(τ) → 0 καθώς τ → −∞ και αυτό

συνεπάγεται ότι K → ∞ καθώς τ → −∞. Επομένως, οι τροχιές πλησιάζουν
σπειροειδώς το σύνορο όταν πηγαίνουμε προς το παρελθόν. Από την εξίσωση

περιορισμού προκύπτουν τα εξής:

• Το ∂Ω1 αντιστοιχεί στο ϕ = −∞.

• Το ∂Ω2 αντιστοιχεί στο ϕ = +∞ λόγω συμμετρίας.

Οπότε, αφού δείξαμε ότι το σύστημα κάνει άπειρες περιστροφές γύρω από

το σύνορο καθώς τ → −∞ καταλήγουμε ότι το φ θα κάνει άπειρες ταλαντώσεις
γύρω από το 0 με το πλάτος της ταλάντωσης να αυξάνεται αποκλίνοντας ασυμ-
πτωτικά στο άπειρο.

• ΄Οταν q ≈ 0 ⇒ y ≈ 0 ⇒ ϕ̇ = 0 και άρα το πεδίο βρίσκεται στην κορυφή
του δυναμικού όπου V (ϕ) >> ϕ̇⇒ ρ = −p, η οποία είναι η εξίσωση κατάστα-
σης De Sitter με αρνητική πίεση και εκθετική διαστολή.
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Αυτή η ταχεία διαστολή σχετίζεται με το γεγονός ότι η βαρύτητα είναι απωστι-

κή παρουσία μεγάλων αρνητικών πιέσεων.

• ΄Οταν |q| ≈ 1 ⇒ ϕ̇2 >> V (ϕ) ⇒ ρ = p και άρα η ενέργεια του πεδίου
συμπεριφέρεται σαν άκαμπτο ρευστό.

Επομένως, το σύμπαν κοντά στην μοναδικότητα δεν έχει σταθερή συμπερι-

φορά. Η ασυμπτωτική συμπεριφορά του χωροχρόνου μπορεί να χαρακτηριστεί

από μία άπειρη ακολουθία άκαμπτων φάσεων διακοπτόμενων από φάσεις τύπου

De Sitter.

΄Αρα συνολικά δείξαμε τα παρακάτω:

• Για α < 1 το δυναμικό κοντά στην μοναδικότητα δεν επηρεάζει ουσιαστικά
την εξέλιξη και η λύση για το άμαζο βαθμωτό πεδίο αποτελεί μία καλή ασυμ-

πτωτική προσέγγιση. ΄Ολες σχεδόν οι φυσικές λύσεις προσεγγίζουν μόνοτονα

στο παρελθόν ένα από τα σημεία p+, p− ενώ στο μέλλον όλες καταλήγουν στο
pd που αντιστοιχεί στον De Sitter χωροχρόνο.

• Για α ≥ 1 το δυναμικό είναι πολύ απότομο οπότε πλέον η λύση για
το άμαζο βαθμωτό πεδίο δεν είναι μία καλή ασυμπτωτική προσέγγιση προς το

παρελθόν. Για τ → −∞ έχουμε ότι οι τροχιές πλησιάζουν σπειροειδώς τον

ετεροκλινικό κύκλο ενώ εμφανίζεται άπειρος αριθμός ταλαντώσεων γύρω από

το μηδέν κοντά στην ιδιομορφία. Στο μέλλον πάλι όλες οι τροχιές καταλήγουν

στο pd που αντιστοιχεί στον De Sitter χωροχρόνο.

4 ΥΠΑΡΞΗ ΙΔΙΟΜΟΡΦΙΑΣ ΚΑΙ

ΟΡΙΖΟΝΤΑ ΣΩΜΑΤΙΔΙΩΝ

Εφόσον συμβαίνει ένας άπειρος αριθμός ταλαντώσεων του βαθμωτού πεδίου

για α > 1 θα μπορούσε εύκολα να αναμένεται ότι και ένα άπειρο διάστημα
ιδιοχρόνου πρέπει, επίσης, να μεσολαβεί, αφού οι ταλαντώσεις θα μπορούσαν

να χρησιμοποιηθούν ως ένα φυσικό ρολόι, το οποίο θα μετρούσε ένα άπειρο

χρονικό διάστημα στο παρελθόν οποιουδήποτε χωροχρονικού σημείου. Αν αυ-

τό ίσχυε, τότε ο χωροχρόνος θα ήταν μη ιδιομορφικός για όλες τις φυσικές

λύσεις. Ωστόσο, αποδεικνύεται ότι οι ταλαντώσεις συσσωρεύονται η μία πάνω

στην άλλη και πράγματι επιτυγχάνεται μία χωροχρονική ιδιομορφία έπειτα από

ένα πεπερασμένο χρονικό διάστημα.
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Για να το δείξουμε αυτό πρέπει να εκτιμήσουμε τον ιδιοχρόνο που μεσολαβεί

στο παρελθόν κάποιου αυθαίρετου αρχικού σημείου p0 στην τροχιά ψp0(τ). Ε-
φόσον όλες οι τροχιές είναι ασυμπτωτικά εφαπτόμενες στο ∂Ω, θα είναι επαρκές
να περιορίσουμε την προσοχή μας σε αρχικά σημεία που βρίσκονται στο σύνολο

Σ0 = {(p, q) : q = 1− ϵ, 0 < p ≤ ϵ} όπου ϵ > 0 μπορεί να επιλεγεί αυθαίρετα
μικρό.

Πριν αποδείξουμε τα δύο βασικά θεωρήματα της ενότητας θα ήταν βολικό

να αποδείξουμε το παρακάτω Λήμμα:

Λήμμα 4.0.1. Για όλα τα 0 < n < 1 υπάρχουν θετικοί αριθμοί ε και p̃m τέτοιοι
ώστε αν p0 = (p̃0, 1− ϵ) ∈ Σ0 και p̃0 < p̃m τότε

H(ψp0(τ)) < H0e
4nτ

στο παρελθόν του p0, όπου ψp0(τ) είναι η μοναδική τροχιά του δυναμικού συ-
στήματος που διέρχεται από το σημείο p0 με ψp0(0) = p0

Το Λήμμα στην ουσία δίνει ένα άνω φράγμα για την Η, το οποίο σημαίνει ότι

καθώς οι τροχιές κάνουν όλο και πιο γρήγορες ταλαντώσεις γύρω από το ∂Ω,
η απόσταση τους από το σύνορο(που στην ουσία αυτό αντιπροσωπεύει η Η)

συρρικνώνεται εκθετικά. Δηλαδή, οι ταλαντώσεις συσσωρεύονται η μία πάνω

στην άλλη.

Απόδειξη. Από προηγούμενη ενότητα είχαμε την σχέση
dH
dτ

= 4Hq2(τ). Ολο-
κληρώνοντας προς τα πίσω στον χρόνο από τ = 0 έως κάποια προγενέστερη
στιγμή τf λαμβάνουμε:

H(τf ) = H0e
−4

∫ τf
0 q2(τ)dτ

(4.1)

Αυτή η σχέση δείχνει ότι το Η μειώνεται όσο πηγαίνουμε προς το παρελθόν αν

το q ̸= 0. ΄Εστω Σ1 = {(p, q) ∈ Ω : p = ϵ, 1− q ≤ ϵ}.
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Σχήμα 3:

Το Σ1 +Σ0 περικλείει ένα κουτί Ω
+
ϵ , εμβαδού περίπου ϵ

2
μέσα στο Ω γύρω

από το p+. (Δες Σχήμα 3) Αντίστοιχα, αν ορίσουμε τα σύνολα Σ2 = {(p, q) ∈
Ω : p = ϵ, 1 + q ≤ ϵ} και Σ3 = {(p, q) ∈ Ω : q = 1 + ϵ, 0 < p ≤ ϵ}, τότε
κατασκευάζεται ένα άλλο κουτί γύρω από το p−. ΄Εστω το χρονικό διάστημα
I := [τf , 0] . Τότε για μία δεδομένη τροχιά ψp0 μπορούμε να γράψουμε I =
Ic ∪ Ib, όπου Ic = {τ ∈ I : ψp0(τ) ∈ Ω±

ϵ } και Ib = {τ ∈ I : ψp0(τ) /∈ Ω±
ϵ }.

΄Οπότε, θα έχουμε:∫ 0

τf

q2dτ =

∫
Ic

q2dτ +

∫
Ib

q2dτ >

∫
Ic

q2dτ =

∫
Ic

(1−O(ϵ))dτ

Σταθεροποιούμε το n και έστω m τέτοιο ώστε n < m < 1. Τότε για ε
επαρκώς μικρό έχουμε: ∫ 0

τf

q2dτ > m

∫
Ic

dτ

Θα δείξουμε ότι επιλέγοντας το p̃0 επαρκώς μικρό, ο λόγος
∫
Ic

dτ∫
I dτ
μπορεί να

γίνει αυθαίρετα κοντά στο 1. Από την πρώτη εξίσωση του δυναμικού συστήμα-
τος παίρνουμε ότι:

d ln p

dτ
= −αq + q2 < 1 + α αφού |q| < 1

15



Οπότε αν τ2 < τ1 έχουμε:

ln p1
ln p2

< (1 + α)(τ1 − τ2) όπου p1 := p(τ1), p2 := p(τ2)

Αφού ο παραμετρικός χρόνος Δτ που χρειάζεται ώστε ένα σημείο p0 =
(p̃0, 1− ϵ) ∈ Σ0 να διατρέξει το Ω

+
ϵ και να φτάσει στο Σ1 πρέπει να ικανοποιεί

|∆τ | > 1

1 + α
ln

ϵ

p̃0

Το απόλυτο εδώ είναι απαραίτητο γιατί ιχνηλατούμε την τροχιά προς τα πίσω

στον χρόνο, άρα το Δτ θα είναι αρνητικό.

Εφόσον ψp0 είναι παρελθοντικά ασυμπτωτική προς τον οριακό κύκλο γl, η
τομή της παρελθοντικής τροχιάς O−

p0
με την ευθεία q = 1− ϵ πρέπει να περιέχει

ένα άπειρο αριθμό σημείων επιπλέον του p0. Αν p1 είναι ένα τέτοιο σημείο
δηλαδή p1 = (p̃1, 1− ϵ) τότε χρησιμοποιώντας ότι η H = p2(1− p2 − q2) είναι
αύξουσα και βάζοντας q = 1− ϵ θα έχουμε ότι p̃1 < p̃0.
Δηλαδή, με άλλα λόγια η τροχιά ψp0 διέρχεται μέσα από το κουτί Ω

+
ϵ σε κάθε

διαδοχικό κύκλο και το χρονικό διάστημα ∆τ+n για να διατρέξει το Ω+
ϵ στον

n−οστό κύκλο ικανοποιεί την ανισότητα:

|∆τ+n | >
1

α + 1
ln

(
ϵ

p̃n

)
>

1

α + 1
ln

(
ϵ

p̃0

)
Ομοίως, ορίζοντας∆τ−n ως τον χρόνο που απαιτείται ώστε η ψp0 να διατρέξει

το κουτί Ω−
ϵ στον n−οστό κύκλο θα ικανοποιεί την ανισότητα:

ln

(
p1
p2

)
< (1 + α)(τ1 − τ2) ⇒ |∆τ−n | >

1

α + 1
ln

(
ϵ

p̂n

)
όπου p̂n είναι η p−συντεταγμένη της τομής της ψp0 με το Σ3 στον n−οστό

κύκλο. Με τον όρο n−οστό κύκλο εννοούμε έναν πλήρη κύκλο από το σημείο
(p̂n−1, 1− ϵ) ∈ Σ0 στο (p̂n, 1− ϵ) ∈ Σ0.

Από τον ορισμό της Η και επειδή ο όρος q2 παίρνει την ίδια τιμή στο Σ0 και

Σ3 έχουμε ότι για κάθε σημείο σε αυτά τα σύνολα θα ισχύει:

H2 = (2ϵ− ϵ2)p2 +O(ϵp4)

και αφού Η είναι μονότονη τότε για ε επαρκώς μικρό θα έχουμε p̂n < p̃0.
Οπότε

|∆τ−n | >
1

α + 1
ln

(
ϵ

p̃0

)
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Σχήμα 4:

΄Εστω, τώρα, Δτ να είναι ο παραμετρικός χρόνος που χρειάζεται ώστε ένα

σημείο στο Σ1 να φτάσει στο Σ2 κοντά στο ∂Ω2. Αυτός είναι ο χρόνος που

απαιτείται για να πάμε από το Ω+
ϵ στο Ω

−
ϵ με την έννοια του αντίστροφου χρόνου.

Λόγω συνέχειας, το Δτ προσεγγίζει το αρνητικό χρονικό διάστημα που η

ασυμπτωτική λύση γ1 χρειάζεται για να απεικονίσει το σημείο (ϵ,
√
1− ϵ2) ∈ Σ1

στο σημείο (ϵ,−
√
1− ϵ2) ∈ Σ2. (Δες Σχήμα 4) Το διάστημα αυτό, όμως, είναι

πεπερασμένο. Επομένως το χρονικό διάστημα για να πάει κανείς από το Σ1 στο

Σ2 πρέπει να προσεγγίζει ένα πεπερασμένο αρνητικό χρονικό όριο. Το απόλυτο

του, λοιπόν, πρέπει να διαθέτει ένα πεπερασμένο άνω φράγμα τ1. ΄Εστω, δηλαδή,
∆τ 1n ο χρόνος που απαιτείται ώστε η ψp0 να πάει από το Σ1 στο Σ2 στον n−οστό
κύκλο, τότε θα ισχύει για κάποιο πεπερασμένο τ1:

|∆τ 1n| < τ1

Ομοίως, αν ∆τ 2n ο χρόνος που απαιτείται ώστε η ψp0 να κινηθεί προς τα

πίσω στον χρόνο από το Σ3 στο Σ0 στον n−οστό κύκλο, τότε θα ισχύει για
κάποιο πεπερασμένο τ2:

|∆τ 2n| < τ2

Εφόσον η ψp0 προσπίπτει στο Σ0 και επομένως διέρχεται από το Ω
+
ϵ έπεται
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από τις προηγούμενες ανισότητες ότι∫
Ic
dτ∫

Ib
dτ

>
1

τϵ(α + 1)
ln

(
ϵ

p̃0

)
όπου τϵ = max(τ1, τ2)

Επιλέγουμε p̃0 = ϵexp

[
−τϵ(α+1)
(m
n
−1)

]
και τότε∫

I

dτ =

∫
Ic

dτ

[
1 +

∫
Ib
dτ∫

Ic
dτ

]
<

∫
Ic

dτ

[
1 +

τϵ(α + 1)

ln

(
ϵ
p̃0

) ]
⇒

⇒
∫
I

dτ <
m

n

∫
Ic

dτ ⇒ −τf <
m

n

∫
Ic

dτ

΄Αρα τελικά έχουμε:

H(τf ) = H0e
(−4

∫ 0
τf

q2dτ)
< H0e

(−4m
∫
Ic

dτ) ⇒ H(τf ) < H0e
4nτf

Τώρα πια πολύ εύκολα αποδεικνύουμε τα παρακάτω θεωρήματα:

Ορισμός 4.0.2. Μία κοσμολογία βαθμωτού πεδίου είναι μη τετριμμένη αν

υπάρχει κάποιο χωροχρονικό σημείο για το οποίο το ϕ̇ να είναι μη μηδενικό.

Θεώρημα 4.0.3. Αν (gµν , ϕ) είναι μία μη τετριμμένη κοσμολογία βαθμωτού
πεδίου με δυναμικό V (ϕ) = eλϕ + e−λϕ

και αν το gµν είναι χωρικά επίπεδο και
ισότροπο, τότε το gµν διαθέτει μία αρχική χωροχρονική ιδιομορφία.

Απόδειξη. Σύμφωνα με το προηγούμενο Λήμμα υπάρχουν θετικοί αριθμοί ϵ και
p̃m τέτοιοι ώστε όλες οι τροχιές του συστήματος που προσπίπτουν στο Σ0 με

p̃0 < p̃m να ικανοποιούν H(τ) < H0e
4nτ∀τ < 0. Για να αποδείξουμε το θεώρη-

μα αρκεί να δείξουμε ότι αυτές οι τροχιές φτάνουν στο σύνορο σε πεπερασμένο

ιδιοχρόνο. Ο ιδιοχρόνος που απαιτείται για να φτάσουν στο σύνορο δίνεται από

τον τύπο:

∆t =

∫ ∞

0

dt =

∫ 0

−∞
xdτ

Από την σχέση

H = 9x4 ⇒ x4 <
H0

9
e4nτ ⇒ x < x0e

nτ
όπου x0 =

(
H0

9

) 1
4
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Επιλέγουμε n = 1
2
οπότε x < x0e

τ
2 . ΄Αρα τελικά προκύπτει:

∆t =

∫ 0

−∞
xdτ < x0

∫ 0

−∞
e

τ
2 dτ = 2x0

το οποίο είναι προφανώς πεπερασμένο.

Θεώρημα 4.0.4. Αν (gµν , ϕ) είναι μία μη τετριμμένη κοσμολογία βαθμωτού
πεδίου με δυναμικό V (ϕ) = eλϕ + e−λϕ

και αν το gµν είναι χωρικά επίπεδο
και ισότροπο, τότε ορίζοντες σωματιδίων υπάρχουν για όλους τους ισότροπους

παρατηρητές.

Απόδειξη. ΄Ενας ορίζοντας σωματιδίων υπάρχει για έναν ισότροπο παρατηρητή

την χρονική στιγμή t αν το ολοκλήρωμα l =
∫ t

0
1
α
dt υπάρχει και είναι πεπερα-

σμένο. Από τον ορισμό του τ και την σχέση dt = xdτ έχουμε:

l =

∫ t

0

1

α
dt =

∫ τ

−∞
e−

τ
3 e

t0
3 x(τ)dτ

Από το Λήμμα έχουμε ότι υπάρχουν θετικοί αριθμοί ϵ και p̃m τέτοιοι ώστε
όλες οι τροχιές του συστήματος που προσπίπτουν στο Σ0 με p̃0 < p̃m να ικα-
νοποιούν H(τ) < H0e

τ
2 ∀τ < 0. Αν το l είναι πεπερασμένο στην στιγμή τ = 0,

τότε θα είναι πεπερασμένο για όλα τα τ. Επομένως, αρκεί να δείξουμε ότι οι

τροχιές για τις οποίες ισχύει H(τ) < H0e
τ
2 διαθέτουν ορίζοντα σωματιδίων

στην στιγμή τ = 0.

΄Ομως,

H = 9x4 ⇒ x =

(
H

9

) 1
4

⇒ x(τ) < x0e
τ
2 όπου x0 =

(
H0

9

) 1
4

΄Αρα τελικά έχουμε:

l < e
τ0
3

∫ 0

−∞
e−

τ
3 · x0 · e

τ
2 dτ = 6e

τ0
3 · x0

το οποίο είναι προφανώς πεπερασμένο.

Να σημειώσουμε, επίσης, ότι l → 0 καθώς x0 → 0 γεγονός που δείχνει ότι
το μήκος του ορίζοντα συρρικνώνεται στο μηδέν καθώς το t→ 0 .
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5 ΣΥΜΠΕΡΑΣΜΑΤΑ

Το παράδειγμα που μελετήσαμε δείχνει ότι πολύ απότομα δυναμικά μπορούν να

οδηγήσουν σε μη τετριμμένη ασυμπτωτική συμπεριφορά ακόμα και σε πολύ απλά

κοσμολογικά μοντέλα. Δηλαδή, δεν έχουμε την αναμενόμενη συμπεριφορά κο-

ντά στην ιδιομορφία και το σύστημα δεν μοιάζει με τα κλασικά FLRW μοντέλα.

Τα ποιοτικά χαρακτηριστικά που βρέθηκαν ( ταλαντώσεις, ιδιομορφία, ο-

ρίζοντες σωματιδιών) δεν είναι ειδικά μόνο για το εκθετικής μορφής δυναμικό.

Ακόμα και πιο απότομα από εκθετικά δυναμικά δείχνουν αυτή την συμπεριφορά.

Συγκεκριμένα, έρευνες για το πιο απότομο δυναμικό V (ϕ) = eλϕ
2
και για το

V (ϕ) = 1
(λ−ϕ2)

στο χωρίο ϕ2 < λ δείχνουν ότι η συμπεριφορά του συστήματος
δεν παρουσιάζει ιδιαίτερες διαφορές.

Μέχρι τώρα δουλεύαμε σε FLRW χωροχρόνους, δηλαδή ομογενείς και ι-

σότροπους. Θα ήταν ενδιαφέρον να μελετηθεί η δυναμική των μοντέλων με

εκθετικά απότομα δυναμικά σε λίγο πιο σύνθετους χωροχρόνους όπως ο χω-

ροχρόνος Bianchi τύπου IX. Σε αυτή την περίπτωση ενδεχομένως να οδηγη-
θούμε σε αποφυγή οριζόντων σωματιδίων αλλά αυτό να τονίσουμε ότι αποτελεί

προοπτική για μελλοντική μελέτη και όχι κάποιο αποδεδειγμένο αποτέλεσμα.
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