
Σημειώσεις για τον Διακριτό

Μετασχηματισμό Fourier (DFT) και τον
Ταχύ Μετασχηματισμό Fourier (FFT)

Κυριάκος Καλλέργης

January 2026



≪Η ασυνειδησία της αδυναμίας μας συνιστά τη

δύναμη μας≫

Fernando Pessoa

2



Πρόλογος

Η μελέτη της ψηφιακής επεξεργασίας σήματος βασίζεται σε δύο πυλώνες: στη μαθηματική
κομψότητα του Διακριτού Μετασχηματισμού Fourier (DFT) και στην υπολογιστική αποδοτι-
κότητα του Ταχύ Μετασχηματισμού Fourier (FFT). Αυτές οι σημειώσεις φιλοδοξούν να
παρουσιάσουν τα δύο αυτά αντικείμενα με ενιαίο και συνεκτικό τρόπο. Η δομή των σημειώσε-
ων αναπτύσσεται σε τρία μέρη. Στο Κεφάλαιο 0, τίθενται τα απαραίτητα εργαλεία Γραμ-
μικής ΄Αλγεβρας που απαιτούνται στην απόδειξη του θεμελιώδους θεωρήματος του Διακρι-

τού Μετασχηματισμού Fourier: ότι οι γραμμικοί, μεταθετικά αναλλοίωτοι (Translation-
Invariant) γραμμικοί μετασχηματισμοί διαγωνοποιούνται από τη βάση Fourier. Λόγω του
εισαγωγικού χαρακτήρα αυτού του κεφαλαίου, η ανάγνωσή του δεν είναι υποχρεωτική για
τη συνέχεια. Ο αναγνώστης μπορεί να προχωρήσει απευθείας στο Κεφάλαιο 1 και να ανα-
τρέχει στο Κεφάλαιο 0 συμβουλευτικά, όποτε προκύπτει ανάγκη χρήσης των εργαλείων της
Γραμμικής ΄Αλγεβρας. Στο Κεφάλαιο 1, εισάγονται οι τυπικοί ορισμοί και οι βασικές
ιδιότητες του Διακριτού Μετασχηματισμού Fourier. Μέσα από τη μαθηματική ανάλυση,
οδηγούμαστε στην απόδειξη του βασικού θεωρήματος που αναφέρθηκε, αποκαλύπτοντας τη
φυσική σύνδεση μεταξύ των γραμμικών συστημάτων και της ανάλυσης συχνοτήτων. Τέλος,
στο Κεφάλαιο 2 περιγράφεται ο Ταχύς Μετασχηματισμός Fourier. Εδώ αναλύεται ο αλ-
γόριθμος σε δύο περιπτώσεις και εξηγείται γιατί μειώνεται δραστικά το υπολογιστικό κόστος

για τον υπολογισμό του Διακριτού Μετασχηματισμού Fourier. Οι σημειώσεις αυτές έχουν
βασιστεί κατά κύριο λόγο στο βιβλίο του M.W. Frazier [MF], και δευτερευόντως (όσον
αφορά τη γραμμική άλγεβρα) στο βιβλίο του S. Axler [SA].
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0 Στοιχεία Γραμμικής ΄Αλγεβρας

Στο παρόν κεφάλαιο παρατίθενται οι βασικοί ορισμοί και τα απαραίτητα θεωρήματα της

Γραμμικής ΄Αλγεβρας που θεμελιώνουν τη θεωρία του Διακριτού Μετασχηματισμού Fourier.
Το υλικό παρουσιάζεται με συνοπτικό τρόπο, καθώς στόχος είναι να λειτουργήσει ως σημείο
αναφοράς για τα επόμενα κεφάλαια και όχι ως μια εξαντλητική εισαγωγή στο αντικείμενο.
Για τον λόγο αυτό, παραλείπονται οι αποδείξεις και ορισμένοι στοιχειώδεις ορισμοί, ενώ
δίνονται οι αντίστοιχες βιβλιογραφικές παραπομπές για περαιτέρω μελέτη. Το περιεχόμενο
του κεφαλαίου βασίζεται στα συγγράμματα των S. Axler [SA] και M.W. Frazier [MF].

Ορισμός 0.1 (Ορθογώνιο και Ορθοκανονικό Σύνολο). Δύο διανύσματα u, v ∈ V ονομά-
ζονται ορθογώνια (κάθετα) αν το εσωτερικό τους γινόμενο είναι μηδέν:

⟨u, v⟩ = 0

΄Ενα σύνολο διανυσμάτων {e1, e2, . . . , ek} ονομάζεται:

• Ορθογώνιο, αν ⟨ei, ej⟩ = 0 για κάθε i ̸= j.

• Ορθοκανονικό, αν είναι ορθογώνιο και επιπλέον κάθε διάνυσμα έχει μοναδιαίο μήκος
(∥ei∥ = 1). Δηλαδή:

⟨ei, ej⟩ = δij =

{
1 αν i = j

0 αν i ̸= j

Ορισμός 0.2 (Γραμμική Ανεξαρτησία). ΄Ενα πεπερασμένο σύνολο διανυσμάτων {v1, v2, . . . ,
vk} του χώρου V ονομάζεται γραμμικά ανεξάρτητο, ο γραμμικός συνδυασμός των διανυσ-
μάτων ισούται με μηδέν:

c1v1 + c2v2 + · · ·+ ckvk = 0

αν και μόνον εάν όλοι οι συντελεστές είναι μηδέν (c1 = c2 = · · · = ck = 0).

Λήμμα 0.1. ΄Εστω V ένας διανυσματικός χώρος με εσωτερικό γινόμενο και B ένα ορ-
θογώνιο σύνολο διανυσμάτων πεπερασμένου πλήθους υποσύνολο του V τέτοιο ώστε 0 /∈ B.
Τότε το B είναι γραμμικά ανεξάρτητο σύνολο.

Απόδειξη. Βλέπε ([MF], σελ. 84)

Ορισμός 0.3 (Γραμμική Θήκη - Span). ΄Εστω V ένας διανυσματικός χώρος πάνω από ένα
σώμα F και v1, v2, . . . , vk ∈ V . Ονομάζουμε γραμμική θήκη (linear span) των διανυσμάτων
αυτών, το σύνολο όλων των δυνατών γραμμικών συνδυασμών τους. Συμβολίζεται ως:

span{v1, v2, . . . , vk} = {c1v1 + c2v2 + · · ·+ ckvk : ci ∈ F}

Αν ισχύει V = span{v1, . . . , vk}, τότε λέμε ότι τα διανύσματα αυτά παράγουν τον χώρο V .

Ορισμός 0.4 (Βάση). ΄Εστω V ένας διανυσματικός χώρος. ΄Ενα σύνολο διανυσμάτων
B = {v1, v2, . . . , vn} ονομάζεται βάση του V , αν ικανοποιεί τις εξής συνθήκες:

1. Τα διανύσματα v1, . . . , vn είναι γραμμικώς ανεξάρτητα.

2. Τα διανύσματα παράγουν τον χώρο V , δηλαδή V = span{v1, . . . , vn}.
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Παρατήρηση. Η σημαντικότερη συνέπεια του ορισμού της βάσης είναι η μοναδικότητα της
αναπαράστασης. Αν το B είναι βάση, τότε κάθε διάνυσμα u ∈ V γράφεται με μοναδικό
τρόπο ως γραμμικός συνδυασμός των στοιχείων της βάσης:

u = c1v1 + c2v2 + · · ·+ cnvn

Οι μοναδικοί αριθμοί ci ονομάζονται συντεταγμένες του u ως προς τη βάση B.

Θεώρημα 0.1. ΄Εστω V ένας n-διάστατος γραμμικός χώρος, και v1, v2, . . . , vn διακριτά
διανύσματα στο V . Τότε τα v1, v2, . . . , vn είναι γραμμικός ανεξάρτητα αν και μόνον αν
V = span{v1, . . . , vn}

Απόδειξη. Βλέπε ([MF], σελ: 45)

Ορισμός 0.5. ΄Εστω V ένας διανυσματικός χώρος πάνω από ένα σώμα F και S =
{v1, v2, . . . , vn} μία βάση του V . Από τον ορισμό της βάσης, για κάθε v ∈ V υπάρχουν
μοναδικά a1, a2, . . . , an ∈ F τέτοια ώστε v =

∑n
j=1 ajvj. Ορίζουμε [v]S ως το διάνυσμα στο

Fn
με συντεταγμένες a1, a2, . . . , an, δηλαδή:

[v]S =


a1
a2
...
an

 (0.1)

Ονομάζουμε aj την j-οστή συντεταγμένη του v ως προς τη βάση S.

Λήμμα 0.2. ΄Εστω V ένας γραμμικός χώρος με εσωτερικό γινόμενο πεπερασμένης διάσ-
τασης και ορθοκανονική βάση: R = {u1, . . . , un} του χώρου V τότε ισχύουν οι ακόλουθες
ιδιότητες:

1. Για κάθε v ∈ V ,

v =
n∑

j=1

⟨v, uj⟩uj (0.2)

2. Για κάθε v, w ∈ V ,

⟨v, w⟩ =
n∑

j=1

⟨v, uj⟩⟨w, uj⟩ (0.3)

3. Για κάθε v ∈ V ,

∥u∥2 =
n∑

j=1

|⟨v, uj⟩|2 (0.4)

Απόδειξη. Βλέπε ([SA], σελ. 200)

Ορισμός 0.6 (Γραμμικός Μετασχηματισμός). ΄Εστω V και W δύο διανυσματικοί χώροι

πάνω από ένα σώμα F. Μια συνάρτηση T : V → W ονομάζεται γραμμικός μετασχημα-

τισμός ή γραμμική απεικόνιση, αν διατηρεί τις πράξεις της πρόσθεσης και του βαθμωτού
πολλαπλασιασμού. Συγκεκριμένα, πρέπει να ισχύουν τα εξής για κάθε u, v ∈ V και α ∈ C:

1.
T (u+ v) = T (u) + T (v)
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2.
T (αu) = αT (u)

Παρατήρηση. Στην περίπτωση που ο χώρος άφιξης ταυτίζεται με τον χώρο ορισμού (W =
V ), τότε ο μετασχηματισμός T : V → V ονομάζεται συχνά γραμμικός τελεστής.

Θεώρημα 0.2. ΄Εστω U, V διανυσματικοί χώροι διάστασης n, και γραμμικός τελεστής
T : U → V . Τότε ο T είναι 1-1 αν και μόνον εάν ο T είναι επί.

Απόδειξη. Βλέπε ([SA], σελ. 84)

Λήμμα 0.3 (Πίνακας Αναπαράστασης Γραμμικού Μετασχηματισμού). ΄Εστω U και V
διανυσματικοί χώροι πεπερασμένης διάστασης πάνω από ένα σώμα F. Υποθέτουμε ότι
R = {u1, u2, . . . , un} είναι μια βάση του U , S = {v1, v2, . . . , vm} είναι μια βάση του V , και
T : U → V είναι ένας γραμμικός μετασχηματισμός.

Επειδή T (uj) ∈ V για κάθε j, υπάρχουν μοναδικοί συντελεστές aij (για i = 1, 2, . . . ,m
και j = 1, 2, . . . , n), τέτοιοι ώστε:

T (u1) = a11v1 + a21v2 + · · ·+ am1vm

T (u2) = a12v1 + a22v2 + · · ·+ am2vm
...

T (un) = a1nv1 + a2nv2 + · · ·+ amnvm

΄Εστω A ο m × n πίνακας του οποίου η k-οστή στήλη αποτελείται από τους συντελεστές
a1k, a2k, . . . , amk του αναπτύγματος του T (uk), δηλαδή:

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 (0.5)

Τότε ισχύει:
[T (u)]S = A[u]R για κάθε u ∈ U. (0.6)

Επιπλέον, ο A είναι ο μοναδικός πίνακας που ικανοποιεί τη σχέση (0.6).

Απόδειξη. Βλέπε ([MF], σελ. 48)

Παρατήρηση. Ο A καλείται πίνακας αναπαράστασης του T από τη βάση R στη βάση S
([T (u)]S = A[u]R). Ενίοτε συμβολίζεται και ως AT .

Λήμμα 0.4. ΄Εστω U και V διανυσματικοί χώροι διάστασης n πάνω από ένα σώμα F.
Υποθέτουμε ότι T : U → V είναι ένας γραμμικός μετασχηματισμός. ΄Εστω R μια βάση
του U και S μια βάση του V . ΄Εστω AT ο πίνακας που αναπαριστά τον T από τη βάση R
στη βάση S. Τότε, ο T είναι αντιστρέψιμος γραμμικός μετασχηματισμός αν και μόνο αν
ο AT είναι αντιστρέψιμος πίνακας.

Απόδειξη. Βλέπε ([MF], σελ. 47)
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Ορισμός 0.7. ΄Εστω V διανυσματικός χώρος πεπερασμένης διάστασης και T : V → V
γραμμικός μετασχηματισμός. Εάν ο διανυσματικός χώρος V έχει βάση που αποτελείται από
ιδιοδιανύσματα του T , τότε λέμε ότι ο T είναι διαγωνοποιήσιμος.
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1 Ο Διακριτός Μετασχηματισμός Fourier (DFT)

Στο πρώτο μέρος του κεφαλαίου παρατίθενται οι βασικοί ορισμοί που αφορούν τον Διακριτό

Μετασχηματισμό Fourier και τη βάση Fourier, καθώς και οι ιδιότητές τους. Στη συνέχεια, η
παρουσιάζεται η απόδειξη ενός θεμελιώδους θεωρήματος, σύμφωνα με το οποίο οι μεταθετικά
αναλλοίωτοι γραμμικοί μετασχηματισμοί διαγωνοποιούνται από τη βάσης Fourier. Το υλικό
της ενότητας είναι βασισμένο στο βιβλίο του M.W. Frazier [MF].

1.1 Ορισμοί και βασικές ιδιότητες

Για τον Διακριτό Μετασχηματισμό Fourier θα εργαζόμαστε με διανύσματα N διαστάσεων
πάνω από το C. Ο συμβολισμός θα έχει δύο διαφοροποιήσεις από τον συνήθη τρόπο
απεικόνισης διανυσμάτων, οι λόγοι των οποίων θα γίνουν σαφείς παρακάτω. Η πρώτη αλ-
λαγή είναι ότι οι δείκτες των στοιχείων των διανυσμάτων θα ακολουθούν την αρίθμηση

{0, 1, . . . , N − 1} αντί για {1, 2, . . . , N}. Η δεύτερη είναι ότι κάθε στοιχείο ενός διανύσμα-
τος z, αντί να απεικονίζεται ως zj, θα απεικονίζεται ως z(j). Αυτός ο τρόπος μας βοηθάει να
αντιληφθούμε το z ως μία συνάρτηση ορισμένη στο σύνολο ZN = {0, 1, . . . , N −1}. Επίσης
θα κάνουμε τη σύμβαση να απεικονίζουμε το διάνυσμα z σε οριζόντια αντί για κάθετη μορφή:

z = (z(0), z(1), . . . , z(N − 1))

Ωστόσο, για λόγους συντομίας και αποφυγής περαιτέρω διευκρινήσεων όπου είναι βολικό
θα αντιλαμβανόμαστε το z ως διάνυσμα στήλη:

z =


z(0)
z(1)
.
.
.

z(N − 1)

 (1.1)

Η παραπάνω θεώρηση μας επιτρέπει να διατηρήσουμε τη συνήθη γραφή Az για το γινόμενο
ενός πίνακα N ×N με το διάνυσμα z. Tο σύνολο όλων αυτών των μιγαδικών συναρτήσεων
που ορίζονται στο ZN , συγκροτεί τον διανυσματικό χώρο ℓ

2(ZN). Ο χώρος αυτός ορίζεται
τυπικά ως:

ℓ2(ZN) = {z = (z(0), z(1), . . . , z(N − 1)) : z(j) ∈ C, 0 ≤ j ≤ N − 1}

Με τη συνήθη κατά συνιστώσα πρόσθεση και τον βαθμωτό πολλαπλασιασμό, ο χώρος ℓ2(ZN)
αποτελεί έναν διανυσματικό χώρο διάστασης N πάνω από το C.

Μία βάση για τον ℓ2(ZN) είναι η τυπική ,γνωστή και ως Ευκλείδεια βάση E = {e0, e1, . . . , eN−1},
όπου:

ej(n) =

{
1 αν n = j

0 αν n ̸= j

Σε αυτό το πλαίσιο, το μιγαδικό εσωτερικό γινόμενο στον ℓ2(ZN) ορίζεται ως:

⟨z, w⟩ =
N−1∑
k=0

z(k)w(k) (1.2)
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και την επαγόμενη νόρμα (γνωστή και ως ℓ2 νόρμα):

∥z∥ =
√

⟨z, z⟩

Διατηρούμε την έννοια της ορθογωνιότητας: z ⊥ w αν και μόνο αν ⟨z, w⟩ = 0.

Θα κάνουμε μία ακόμη σύμβαση. Αρχικά, για z ∈ ℓ2(ZN), το z(j) ορίζεται για j =
0, 1, . . . , N−1. Τώρα επεκτείνουμε το z ώστε να ορίζεται σε όλους τους ακεραίους, απαιτών-
τας το z να είναι περιοδικό με περίοδο N :

z(j +N) = z(j), για κάθε j ∈ Z (1.3)

Συνεπώς, για να βρούμε την τιμή του z(j) για j /∈ {0, 1, . . . , N − 1}, αρκεί να προσθέσουμε
(ή να αφαιρέσουμε) ακέραια πολλαπλάσια mN του N στο j, μέχρι το αποτέλεσμα να βρεθεί
στο σύνολο {0, 1, . . . , N − 1}.

Παρατήρηση. Η τιμή του z(j) εξαρτάται μόνο από το υπόλοιπο της διαίρεσης του j με το
N (j (mod N)). Μπορούμε δηλαδή να θεωρήσουμε ότι το z ορίζεται πάνω στις κλάσεις
ισοδυναμίας του Z modulo N . Ειδικότερα, μπορούμε να ορίσουμε το z σε οποιοδήποτε άλλο
σύνολο N διαδοχικών ακεραίων αντί του {0, 1, . . . , N − 1}.

Ορισμός 1.1. Ορίζουμε τα διανύσματα E0, E1, . . . , EN−1 ∈ ℓ2(ZN) ως εξής:

E0(n) =
1√
N
, n = 0, 1, . . . , N − 1

E1(n) =
1√
N
e2πin/N , n = 0, 1, . . . , N − 1

E2(n) =
1√
N
e2πi2n/N , n = 0, 1, . . . , N − 1

...

EN−1(n) =
1√
N
e2πi(N−1)n/N , n = 0, 1, . . . , N − 1

Πιο συνοπτικά, ο γενικός τύπος δίνεται ως:

Em(n) =
1√
N
e2πimn/N , για n = 0, 1, . . . , N − 1 (1.4)

Λήμμα 1.1. Το σύνολο E := {E0, E1, . . . , EN−1} αποτελεί ορθοκανονική βάση για τον
χώρο ℓ2(ZN).
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Απόδειξη. ΄Εστω j, k ∈ {0, 1, . . . , N − 1}. Τότε:

⟨Ej, Ek⟩ =
N−1∑
m=0

Ej(m)Ek(m)

=
N−1∑
m=0

1√
N
e2πijm/N 1√

N
e2πikm/N

=
N−1∑
m=0

1

N
e2πijm/Ne−2πikm/N

=
1

N

N−1∑
m=0

e2πi(j−k)m/N

=
1

N

N−1∑
m=0

(e2πi(j−k)/N)m

όπου για j = k έχουμε:

⟨Ej, Ek⟩ =
1

N

N−1∑
m=0

(e2πi0/N)m =
1

N

N−1∑
m=0

1 =
N

N
= 1

ενώ για j ̸= k:

⟨Ej, Ek⟩ =
1

N

N−1∑
m=0

(e2πi(j−k)/N)m =
1− (e2πi(j−k)/N)N

1− (e2πi(j−k)/N)
=

1− e2πi(j−k)

1− (e2πi(j−k)/N)
= 0

αφού j − k ∈ Z έχουμε ότι e2πi(j−k) = 0 και 1 ̸= (e2πi(j−k)/N) για j ̸= k με j, k ∈
{0, 1, . . . , N − 1}. Επομένως αυτό μας δίνει ότι: Ej ⊥ Ej για j ̸= k και ∥Ej∥ = 1 για κάθε
j ∈ {0, 1, . . . , N −1}. Οπότε το σύνολο E είναι ένα ορθοκανονικό σύνολο, και σύμφωνα με
το λήμμα 0.1, το σύνολο αυτό είναι γραμμικός ανεξάρτητο. Αρά από το θεώρημα 0.1 έχουμε
ότι το σύνολο E είναι βάση του ℓ2(ZN)

Επειδή το E αποτελεί ορθοκανονική βάση του ℓ2(ZN) χρησιμοποιώντας το λήμμα 0.2, θα
έχουμε για κάθε z, w ∈ ℓ2(ZN),

z =
N−1∑
m=0

⟨z, Em⟩Em (1.5)

⟨z, w⟩ =
N−1∑
m=0

⟨z, Em⟩⟨w,Em⟩ (1.6)

∥z∥2 =
N−1∑
m=0

|⟨z, Em⟩|2 (1.7)

όπου ο τύπος (1.2) μας δίνει:

⟨z, Em⟩ =
N−1∑
n=0

z(n)
1√
N
e2πimn/N =

1√
N

N−1∑
n=0

z(n)e−2πimn/N (1.8)
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Ορισμός 1.2. Θεωρούμε z = (z(0), z(1), ..., z(N−1)) ∈ ℓ2(ZN). Για m = 0, 1, . . . , N−1,
ορίζουμε:

ẑ(m) =
N−1∑
n=0

z(n)e−2πimn/N (1.9)

΄Εστω

ẑ = (ẑ(0), ẑ((1), . . . , ẑ((N − 1)) (1.10)

Τότε z ∈ ℓ2(ZN). Η απεικόνισηˆ: ℓ
2(ZN) → ℓ2(ZN), η οποία στέλνει το z στο ẑ, ονομάζεται

Διακριτός Μετασχηματισμός Fourier, και συνήθως συμβολίζεται ως DFT (Discrete
Fourier Transform).

Μία άμεση παρατήρηση είναι ότι η περιοδικότητα του z μεταφέρεται και στο ẑ (με περίοδο
Ν) αφού χρησιμοποιώντας τον τύπο (1.9):

ẑ(m+N) =
N−1∑
n=0

z(n)e−2πi(m+N)n/N

=
N−1∑
n=0

z(n)e−2πimn/Ne−2πiNn/N

=
N−1∑
n=0

z(n)e−2πimn/N = ẑ(m)

αφού e−2πiNn/N = e−2πin = 1 για κάθε n ∈ Z. ΄Ετσι διαπιστώνουμε ότι το ẑ είναι καλώς
ορισμένο στο ℓ2(ZN) συμπεριλαμβανομένης και της παραπάνω σύμβασης (z(m) για κάθε
m ∈ Z).

Μία ακόμη παρατήρηση που μπορούμε να κάνουμε είναι ότι:

ẑ(m) =
√
N⟨z, Em⟩ (1.11)

τύπος ο οποίος προκύπτει απλώς συνδυάζοντας τους τύπους (1.8) και (1.9)

Θεώρημα 1.1. ΄Εστω z, w ∈ ℓ2(ZN). Τότε:

1. Τύπος αντιστροφής Fourier

z(n) =
1

N

N−1∑
m=0

ẑ(m)e2πimn/N
για n = 0, 1, . . . , N − 1 (1.12)

2. Σχέση Parseval

⟨z, w⟩ = 1

N

N−1∑
m=0

ẑ(m)ŵ(m) =
1

N
⟨ẑ, ŵ⟩ (1.13)

3. Τύπος Plancherel

∥z∥2 = 1

N

N−1∑
m=0

|ẑ(m)|2 = 1

N
∥ẑ∥2 (1.14)
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Απόδειξη. Από τους τύπους (1.4),(1.5) και (1.11) θα έχουμε για το 1 .:

z(n) =
N−1∑
m=0

⟨z, Em⟩Em(n) =
N−1∑
m=0

1√
N
ẑ(m)

1√
N
e2πimn/N =

1

N

N−1∑
m=0

ẑ(m)e2πimn/N

για το 2 . θα χρειαστούμε τον τύπο (1.6), όπου:

⟨z, w⟩ =
N−1∑
m=0

⟨z, Em⟩⟨w,Em⟩ =
N−1∑
m=0

1√
N
ẑ(m)

1√
N
ŵ(m) =

1

N

N−1∑
m=0

ẑ(m)ŵ(m) =
1

N
⟨ẑ, ŵ⟩

και για το 3 . χρησιμοποιώντας τον τύπο που μόλις αποδείξαμε (1.13) παίρνουμε:

∥z∥2 = ⟨z, z⟩ = 1

N
⟨ẑ, ẑ⟩ = 1

N
∥ẑ∥2

Για να ερμηνεύσουμε τον τύπο αντιστροφής Fourier (1.12) θα χρειαστούμε και τον παρακάτω
ορισμό.

Ορισμός 1.3. Για m = 0, 1, . . . , N − 1, ορίζουμε Fm ∈ ℓ2(ZN) ως εξής:

Fm(n) =
1

N
e2πimn/N

για n = 0, 1, . . . , N − 1 (1.15)

΄Εστω

F = {F0, F1, . . . , FN−1} (1.16)

Ονομάζουμε το σύνολο F βάση Fourier του ℓ2(ZN).

Από τον τον τύπο (1.4) παίρνουμε ότι

Fm =
1√
N
Em

και από το λήμμα 1.1 προκύπτει ότι το F είναι μία ορθογώνια βάση του ℓ2(ZN). Aντικαθιστώ-
ντας τον τύπο (1.15) ο τύπος (1.12) παίρνει τη μορφή

z =
N−1∑
m=0

ẑ(m)Fm (1.17)

Με άλλα λόγια αν αναπτύξουμε το z ως προς τη βάση F , οι συντελεστές των Fm είναι τα

ẑ(m). Σύμφωνα με τον ορισμό 0.5 θα πάρουμε:

ẑ = [z]F (1.18)

Δηλαδή ο τύπος αντιστροφής Fourier είναι στην ουσία ο τύπος αλλαγής βάσης για την βάση
Fourier.

Παρατηρούμε ότι ο DFT 1.2 είναι γραμμικός μετασχηματισμός, επομένως σύμφωνα με το
λήμμα 0.3 μπορεί να αναπαρασταθεί από έναν πίνακα.

Για να απλοποιήσουμε τον συμβολισμό θα ορίσουμε.

ωN = e−2πi/N
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και στην πιο γενική του μορφή:
ωmn
N = e−2πimn/N (1.19)

΄Ετσι με αυτό τον ορισμό ο τύπος του DFT (1.9) γίνεται

ẑ(m) =
N−1∑
n=0

z(n)ωmn
N (1.20)

Παρακάτω για να ταιριάζει με τον τρέχων συμβολισμό, θα ορίσουμε πίνακα του οποίου οι
δείκτες ως προς τις στήλες και τις γραμμές θα είναι από το 0 μέχρι το N − 1.

Ορισμός 1.4. ΄Εστω WN o πίνακας [wmn]0≤m,n≤N−1 τέτοιος ώστε wmn = ωmn
N . Οπότε ο

πίνακας WN γράφεται

WN =



1 1 1 . . . 1
1 ωN ω2

N . . . ωN−1
N

1 ω2
N . . . . ω

2(N−1)
N

. . . . . . .

. . . . . . .

. . . . . . .

1 ωN−1
N ω

2(N−1)
N . . . ω

(N−1)(N−1)
N


(1.21)

΄Ετσι εάν θεωρήσουμε τα z, ẑ ∈ ℓ2(ZN) ως διανύσματα στήλες και χρησιμοποιώντας τις
εξισώσεις (1.21),(1.20) θα πάρουμε την αρκετά βολική σχέση:

ẑ = WNz (1.22)

Σε αυτό το σημείο αξίζει να παρατηρήσουμε ότι για κάθε N ∈ N ο πίνακας WN είναι

μοναδικός.

Παράδειγμα 1.1. Για n=2

W2 =

[
1 1
1 ω2

]
=

[
1 1
1 e−πi

]
=

[
1 1
1 −1

]
(1.23)

Πόρισμα 1.2. Ο γραμμικός μετασχηματισμός ˆ : ℓ2(ZN) → ℓ2(ZN) είναι 1-1 και επί
επομένως αντιστρέφεται.

Απόδειξη. ΄Εστω z, w ∈ ℓ2(ZN) τέτοια ώστε ẑ = ŵ τότε για κάθε m ∈ {0, 1, . . . , N − 1}
θα έχουμε

ẑ(m) = ŵ(m)

⇒ ẑ(m)− ŵ(m) = 0

όμως

⇒ ẑ(m)− ŵ(m) = (z − w)̂(m) = 0 για κάθε m
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αφού ο DFT είναι γραμμικός. Από τους τύπους (1.11), (1.5) θα έχουμε:

(z − w) =
N−1∑
m=0

⟨z − w,EM⟩Em =
N−1∑
m=0

1√
N
(z − w)̂(m)Em = 0

΄Αρα z = w.
Επομένως η απεικόνισηˆείναι 1−1, οπότε από το θεώρημα 0.2 είναι και επί, άρα αντιστρέφε-
ται.

Συγκεκριμένα από τον τύπο αντιστροφής Fourier (1.12) παίρνουμε την αντίστροφη απεικόνιση
τηςˆτην οποία θα συμβολίσουμε .̌

Ορισμός 1.5. Για w = (w(0), w(1), . . . , w(N − 1)) ∈ ℓ2(ZN), ορίζουμε

w̌(n) =
1

N

N−1∑
m=0

w(m)e2πimn/N
για n = 0, 1, . . . , N − 1 (1.24)

και θεωρούμε

w̌ = (w̌(0), w̌(1), . . . , w̌(N − 1))

Η απεικόνιση ˇ : ℓ2(ZN) → ℓ2(ZN) ονομάζεται αντίστροφος διακριτός μετασχηματισμός
Fourier και συνήθως συμβολίζεται ως ΙDTF(Inverse Discrete Fourier Transform).

Παρατήρηση. Για κάθε z ∈ ℓ2(ZN) και για κάθεm ∈ {0, 1, . . . , N−1} από τους τύπους(1.24),
(1.12) θα έχουμε

(ẑ)̌(n) =
1

N

N−1∑
m=0

ẑ(m)e2πimn/N = z(n) (1.25)

ή ισοδύναμα

(ẑ)̌ = z (1.26)

και με όμοιο τρόπο προκύπτει ότι για κάθε z ∈ ℓ2(ZN)

(ž)̂ = z (1.27)

Επειδή ο DFT είναι γραμμική απεικόνιση και αντιστρέφεται από το λήμμα 0.4 προκύπτει ότι ο
πίνακας WN είναι αντιστρέψιμος (Εδώ δηλαδή ο πίνακας WN είναι ο πίνακας αναπαράστασης

του DFT ως προς τις βάσεις E και F του ℓ2(ZN)). ΄Ετσι παίρνουμε άμεσα τη σχέση z =
W−1

N ẑ. Θεωρώντας w = ẑ από τους τύπους (1.22), (1.25) παίρνουμε ότι για κάθε w ∈ ℓ2(ZN)
ισχύει ότι:

w̌ = W−1
N w (1.28)

Παρόλο που ο υπολογισμός του W−1
N μπορεί να γίνει άμεσα μέσω του WN , πιο απλά, χρησι-

μοποιώντας τους τύπους (1.24), (1.19) θα έχουμε

w̌(n) =
1

N

N−1∑
m=0

w(m)e2πimn/N =
N−1∑
m=0

1

N
ω−mn
N w(m) =

N−1∑
m=0

1

N
ωmn
N w(m)

Αυτό δείχνει ότι το στοιχείο (n,m) του πίνακα W−1
N είναι το

1
N
ωnm
N .
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Αν συμβολίσουμε με WN τον πίνακα του οποίου τα στοιχεία είναι οι μιγαδικοί συζυγείς των

στοιχείων του WN , έχουμε:

W−1
N =

1

N
WN (1.29)

΄Οπως και στον διακριτό μετασχηματισμό Fourier έτσι και εδώ θα επεκτείνουμε το w̌(n)
περιοδικά (με περίοδο N , w̌(n+N) = w̌(n)) για κάθε n ∈ Z.

Παρατήρηση. Χρησιμοποιώντας τους τύπους (1.24), (1.9) για k = −n θα έχω

w̌(k) =
1

N

N−1∑
m=0

w(m)e2πimk/N =
1

N

N−1∑
m=0

w(m)e−2πimn/N =
1

N
ŵ(n) =

1

N
ŵ(−k)

Επομένως για κάθε n ∈ N θα έχουμε

w̌(n) =
1

N
ŵ(−n) (1.30)

και επειδή το w̌ έχει περίοδο N θα πάρουμε τη σχέση:

w̌(n) =
1

N
ŵ(N − n) (1.31)

Η οποία είναι περισσότερο βολική καθώς n ∈ {1, . . . , N − 1} αν και μόνον αν N − n ∈
{1, . . . , N − 1}, ενώ στην περίπτωση που το n = 0, έχουμε N − n = n.

Συνοψίζοντας τα βασικά στοιχεία σχετικά με τονDFT, έχουμε ότι, η απεικόνισηˆ: ℓ2(ZN) →
ℓ2(ZN) είναι ένας αντιστρέψιμος γραμμικός μετασχηματισμός με αντίστροφο την απεικόνιση
.̌ Ερμηνεύοντας τον τύπο αντιστροφής Fourier (1.12) στη μορφή (1.17):

z =
N−1∑
m=0

ẑ(m)Fm

όπου Fm είναι το m-οστό στοιχείο της βάσης Fourier. Συνεπώς, το ẑ(m) είναι το ”βάρος”
του διανύσματος Fm που χρησιμοποιείται για τη σύνθεση του z.

Για να κατανοήσουμε τη φυσική σημασία του Διακριτού Μετασχηματισμού Fourier, είναι
απαραίτητο να εξετάσουμε τα δομικά του στοιχεία, δηλαδή τα διανύσματα βάσης e2πimn/N .
Κάθε τέτοιο διάνυσμα, το οποίο αντιστοιχεί σε έναν δείκτη m, αντιπροσωπεύει ουσιαστικά
μια ≪καθαρή συχνότητα≫. Ειδικότερα, για την τιμή m = 0, το διάνυσμα παραμένει σταθερό
χωρίς να παρουσιάζει ταλαντώσεις. Καθώς όμως η τιμή του m αυξάνεται, η αντίστοιχη
συνάρτηση αρχίζει να ταλαντώνεται εντονότερα στο ίδιο διάστημα. Αυτή η αύξηση του
ρυθμού ταλάντωσης μεταφράζεται σε υψηλότερη συχνότητα, κάτι που στην ακουστική θα
γινόταν αντιληπτό ως ένας οξύτερος τόνος.

Ωστόσο, υπάρχει ένα κρίσιμο σημείο που συχνά προκαλεί σύγχυση: ένα μεγαλύτερο m δεν
συνεπάγεται απαραίτητα υψηλότερη συχνότητα. Λόγω της περιοδικότητας των μιγαδικών
αριθμών, η συνάρτηση για m = N ταυτίζεται πλήρως με τη συνάρτηση για m = 0. Κατά
συνέπεια, οι συχνότητες κατανέμονται με τέτοιο τρόπο ώστε οι χαμηλές συχνότητες να
βρίσκονται στα δύο άκρα του φάσματος (δηλαδή όταν το m είναι κοντά στο 0 ή στο N),
ενώ οι υψηλές συχνότητες συγκεντρώνονται στο μέσο του φάσματος, με την ταχύτερη
ταλάντωση να εμφανίζεται όταν το m πλησιάζει το N/2. Για παράδειγμα, αν θεωρήσουμε
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N = 16, η συχνότητα m = 15 δεν είναι η ταχύτερη, αλλά στην πραγματικότητα αντιστοιχεί
σε μια πολύ αργή ταλάντωση (ισοδύναμη με την m = 1), η οποία απλώς περιστρέφεται με
αντίθετη φορά.

Τι μας δείχνει το μέτρο |ẑ(m)|; Αφού καταλάβαμε ότι κάθε m είναι μια συχνότητα, τότε ο
συντελεστής ẑ(m) που υπολογίζει ο DFT είναι το ≪βάρος≫ αυτής της συχνότητας μέσα στο

σήμα μας. Κοιτάζοντας το μέτρο του (πόσο μεγάλο είναι το νούμερο), καταλαβαίνουμε τη
δομή του σήματος: αν το |ẑ(m)| είναι μεγάλο γύρω από το N/2, τότε το σήμα μας αλλάζει
πολύ γρήγορα (έχει πολλές λεπτομέρειες ή οξύ ήχο), ενώ αν το |ẑ(m)| είναι μεγάλο μόνο
κοντά στο 0 και στο N , τότε το σήμα μας είναι ≪αργό≫ και ομαλό.

Στη συνέχεια θα εξετάσουμε πως ”συμπεριφέρεται” ο Διακριτός Μετασχηματισμός Fourier
(DFT) υπό την επίδραση κάποιον τελεστών.

Ορισμός 1.6 (O Τελεστής Μεταφοράς Rk). ΄Εστω k ∈ Z. Ορίζουμε τελεστή Rk :
ℓ2(ZN) → ℓ2(ZN) ως εξής:

(RKz)(n) = z(n− k) για n ∈ Z (1.32)

Ονομάζουμε τον τελεστή Rk, Τελεστή Μεταφοράς k θέσεων ή απλώς Τελεστή Μεταφοράς.

Ουσιαστικά ο τελεστής μεταφοράς Rk ”στρέφει” το διάνυσμα z κατά k θέσεις. Στη συνέχεια
θα εξετάσουμε πως ο Διακριτός Μετασχηματισμός Fourier επηρεάζεται από αυτόν τον
Τελεστή.

Ορισμός 1.7. ΄Εστω z = (z(0), z(1), . . . , z(N − 1)) ∈ ℓ2(ZN). Τότε ορίζουμε z να είναι

το διάνυσμα z = (z(0), z(1), . . . , z(N − 1)) Δηλαδή: z(n) = z(n) για κάθε n ∈ Z

O Διακριτός Μετασχηματισμός Fourier αποτελεί δηλαδή τον τελεστής αλλαγής βάσης από
την Ευκλείδεια βάση E στη βάση Fourier F . Ερμηνεύοντας τα στοιχεία Fm της βάσης

F , ως ”καθαρές συχνότητες”, ο τύπος αντιστροφής Fourier (1.12) εκφράζει το σήμα ως
υπέρθεση αυτών των συχνοτήτων. Συνεπώς, οι συντελεστές ẑ(m) του μετασχηματισμού
ποσοτικοποιούν τη συμμετοχή (το ”βάρος”) της κάθε ”καθαρής συχνότητας” Fm στη σύν-

θεση του σήματος z.

1.2 Μεταθετικά Αναλλοίωτοι Γραμμικοί Μετασχηματισμοί

(Translation-Invariant Linear Transformations)

Στο πλαίσιο της μαθηματικής μοντελοποίησης της επεξεργασίας σήματος, κάθε σήμα —είτε
πρόκειται για αναλογικό ήχο είτε για ψηφιακά δεδομένα— μοντελοποιείται ως μια συνάρτηση,
ενώ κάθε σύστημα επεξεργασίας αντιμετωπίζεται ως ένας τελεστής μετασχηματισμού T που
δέχεται μια είσοδο και παράγει μια έξοδο. Ιδιαίτερη έμφαση δίνεται στα Γραμμικά και Χρονικά
Αμετάβλητα συστήματα (LTI), τα οποία αποτελούν την ιδανική προτυποποίηση φυσικών
συσκευών, όπως για παράδειγμα οι ενισχυτές. Η ιδιότητα της Γραμμικότητας διασφαλίζει ότι
το σύστημα υπακούει στην αρχή της επαλληλίας, δηλαδή η αντίδραση σε ένα σύνθετο άθρο-
ισμα σημάτων ισούται με το άθροισμα των επιμέρους αντιδράσεων. Παράλληλα, η ιδιότητα της
Χρονικής Αμεταβλητότητας (Translation Invariance) εγγυάται τη σταθερότητα της συμπερ-
ιφοράς του συστήματος στον χρόνο: μια χρονική ολίσθηση (καθυστέρηση) του σήματος
εισόδου κατά k μέσω του τελεστή Rk, προκαλεί ακριβώς την ίδια χρονική ολίσθηση στο
σήμα εξόδου, χωρίς να αλλοιώνεται η μορφή του.
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Ορισμός 1.8. ΄Εστω T : ℓ2(ZN) → ℓ2(ZN) γραμμικός μετασχηματισμός. Λέμε ότι ο T
είναι μεταθετικά αναλλοίωτος εάν

T (Rkz) = RkT (z) για κάθε z ∈ ℓ2(ZN), για κάθε k ∈ Z (1.33)

Δηλαδή μόλις ορίσαμε τους τελεστές οι οποίοι αντιμετατίθεται με τους τελεστές μεταφοράς

Rk. Το σημαντικότερο ίσως χαρακτηριστικό της βάσης Fourier F είναι η ιδιότητα της να
διαγωνοποιεί τους μεταθετικά αναλλοίωτους γραμμικούς μετασχηματισμούς, θεώρημα το
οποίο θα αποδείξουμε παρακάτω. Επίσης όπως προαναφέραμε τα μεταθετικά αναλλοίωτα
συστήματα αποτελούν την πιο φυσική περιγραφή των πραγματικών εφαρμογών. Από την
γραμμική άλγεβρα γνωρίζουμε ότι οι διαγωνοποιήσιμοι τελεστές προσφέρουν τη μέγιστη

υπολογιστική ευκολία. Συνεπώς, μέσω της ορθογώνιας βάσης Fourier, διαπιστώνουμε ότι
τα πιο συνηθισμένα φυσικά συστήματα είναι ταυτόχρονα και τα πιο διαχειρίσιμα μαθηματικά,
καθώς είναι διαγωνοποιήσιμα και μάλιστα από την ίδια βάση. Επιπλέον η βάση αυτή είναι
ορθογώνια.

Τώρα θα επεκτείνουμε τις συμβάσεις που κάναμε για τα διανύσματα z ∈ ℓ2(ZN) σε πίνακες
διάστασης N × N . Οι δείκτες του πίνακα θα ανήκουν στο διάστημα {0, 1, . . . , N − 1}.
Δηλαδή για τον πίνακα A διάστασης N × N θα έχουμε: A = [am,n]0≤m,n≤N−1. Και στη
συνέχεια θα ορίσουμε τα στοιχεία του πίνακα A για κάθε m,n ∈ Z με περίοδο N . Δηλαδή:

am+N,n = am,n, am,n+N = am,n για κάθε n ∈ Z

Με αυτόν τον συμβολισμό παίρνουμε ότι ο πολλαπλασιασμός ενός πίνακα A με ένα διάνυσμα
z θα είναι ένα διάνυσμα του οποίου η m-οστή συντεταγμένη θα ισούται με:

Az(m) =
N−1∑
n=0

am,nz(n) (1.34)

Ορισμός 1.9 (Κυκλικός Πίνακας). ΄Ενας πίνακας A = [am.n]0≤m,n≤N−1 με περίοδο N
(όπως περιγράφηκε στη παραπάνω σύμβαση), θα λέμε ότι είναι κυκλικός εάν:

am+k,n+k = am,n (1.35)

για όλα τα k,m, n ∈ Z

Παρατήρηση. ΄Ενας πίνακας για να είναι κυκλικός αρκεί am+1,n+1 = am,n για κάθε m,n ∈ Z,
καθώς μετά από k επαναλήψεις φτάνουμε στον τύπο (1.35).

Παράδειγμα 1.2. Ο πίνακας 
3 5i 4 −i
−i 3 5i 4
4 −i 3 5i
5i 4 −i 3

 (1.36)

είναι κυκλικός.

Ορισμός 1.10 (Συνέλιξη). Θεωρουμε z, w ∈ ℓ2(ZN). Η συνέλιξη (Συμβ: z ∗ w, όπου
z ∗ w ∈ ℓ2(ZN)) είναι το διάνυσμα του οποίου κάθε συντεταγμένη δίνεται από τον τύπο:

(z ∗ w)(m) =
N−1∑
n=0

z(m− n)w(n)

για όλα τα m ∈ Z.
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Ορισμός 1.11 (Τελεστής Συνέλιξης). Θεωρούμε ένα b ∈ ℓ2(ZN). Ορίζουμε Tb : ℓ
2(ZN) →

ℓ2(ZN) ως εξής:
Tb(z) = b ∗ z

Κάθε τελεστής T της μορφής T = Tb για κάποιο b ∈ ℓ2(ZN), ονομάζεται τελεστής συνέλιξης.

Παρατήρηση. Εύκολα διαπιστώνουμε ότι κάθε τελεστής συνέλιξης είναι γραμμικός τελεστής.

Ορισμός 1.12. Ορίζουμε δ ∈ ℓ2(ZN) ως εξής:

δ(n) =

{
1 αν n = 0

0 αν i ∈ {1, . . . , N − 1}

Σχόλιο. Αυτή είναι η διακριτή εκδοχή της συνάρτησης Δέλτα του Dirac, επίσης γνωστή και
ως unit impulse. Πρακτικά το διάνυσμα δ είναι απλώς το e0.

Ορισμός 1.13 (Πολλαπλασιαστής Fourier). ΄Εστωm ∈ ℓ2(ZN). Ορίζουμε T(m) : ℓ
2(ZN) →

ℓ2(ZN) ως εξής:
T(m)(z) = (mẑ)̌ (1.37)

όπου τοmẑ θεωρούμε το διάνυσμα που προκύπτει εάν πολλαπλασιάσουμε κατά συντεταγμένη
τα διανύσματα m,ẑ, δηλαδή:

(mẑ)(n) = m(n)ẑ(n) για κάθε n

΄Ενας τελεστής αυτής της μορφής ονομάζεται τελεστής πολλαπλασιαστή Fourier, ή απλώς
πολλαπλασιαστής Fourier.

Παρατήρηση. Εύκολα διαπιστώνουμε ότι κάθε πολλαπλασιαστής Fourier είναι γραμμικός
τελεστής.

Σημείωση. ΄Ενας άλλος τρόπος να περιγράψουμε το T (m) είναι να παρατηρήσουμε ότι για
κάθε k

(T(m)(z))̂(k) = (mẑ)(k) = m(k)ẑ(k), (1.38)

απλώς εφαρμόζοντας διακριτό μετασχηματισμό Fourier στην εξίσωση (1.37).

Ο τύπος αντιστροφής Fourier(1.17) για το T(m)(z) για κάποιο z ∈ ℓ2(Z)N μας δίνει:

T(m)(z) =
N−1∑
k=0

(T(m)(z))̂(k)Fk =
N−1∑
k=0

m(k)ẑ(k)Fk

Η τελευταία ισότητα προέκυψε από τον τύπο (1.38). Από αυτόν τον τύπο καταλαβαίνουμε ότι
ο τελεστής T(m) πολλαπλασιάζει κάθε συντελεστή του διακριτού μετασχηματισμού Fourier
με την αντίστοιχη συντεταγμένη του διανύσματος m.

Και τώρα ακολουθεί το πιο σημαντικό θεώρημα του διακριτού μετασχηματισμού Fourier.

Θεώρημα 1.3. ΄Εστω T : ℓ2(ZN) → ℓ2(ZN) γραμμικός μετασχηματισμός. Οι παρακάτω
προτάσεις είναι ισοδύναμες.

i. Ο T είναι μεταθετικά αναλλοίωτος.

ii. Ο πίνακας A ο οποίος αναπαριστά τον γραμμικό τελεστή T (T (z) = Az) ως προς την
Ευκλείδεια βάση E είναι κυκλικός.
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iii. Ο T είναι τελεστής συνέλιξης.

iv. Ο T είναι πολλαπλασιαστής Fourier.

v. Ο πίνακας AF ο οποίος αναπαριστά τον γραμμικό τελεστή T ως προς τη βάση Fourier
είναι διαγώνιος.

Σημείωση. Η πρόταση v. μας λέει ουσιαστικά ότι ο T διαγωνοποιείται από τη βάση Fourier.

Απόδειξη. (i. ⇒ ii.) ΄Εστω T γραμμικός τελεστής μεταθετικά αναλλοίωτος και A ο πίνακας
που αναπαριστά τον γραμμικό τελεστή ως προς την ευκλείδεια βάση E . Δηλαδή T (z) = Az.
Από την παρατήρηση στον ορισμό 1.9, για να δείξουμε ότι ένας πίνακας είναι κυκλικός
αρκεί να δείξουμε ότι am+1,n+1 = am,n για κάθε m,n ∈ Z. ΄Εστω m,n ∈ Z, τότε:

am+1,n+1 = (Aen+1)(m+ 1)

= (T (en+1))(m+ 1)

= (T (R1en))(m+ 1)

(∗)
= (R1T (en))(m+ 1)

= T (en)(m)

= am,n

όπου (∗) χρησιμοποιήσαμε ότι ο T είναι μεταθετικά αναλλοίωτος.

Σημείωση. Εδώ πήραμε en ∈ ℓ2(ZN) με τις γνωστές από πριν συμβάσεις. Δηλαδή en(m) = 1
αν και μόνον αν ∃k ∈ Z τέτοιο ώστε m = n + kN . ΄Ετσι έχουμε ότι en+N = en και ότι
R1en = en+1 για κάθε n ∈ Z.

(ii. ⇒ iii.) ΄Εστω πίνακας A = [am,n]0≤m,n≤N−1 τέτοιος ώστε T (z) = Az για κάθε z ∈
ℓ2(ZN), ο οποίος είναι κυκλικός. Επιλέγουμε το διάνυσμα b να είναι η πρώτη στήλη του
πίνακα A (b ∈ ℓ2(ZN) τ.ω. b(n) = an,0 για κάθε n ∈ Z και θα δείξουμε ότι T = Tb (ορισμός
1.11). Αρχικά επειδή ο A είναι κυκλικός θα έχουμε ότι am,n = am−n,0 = b(m−n) για κάθε
n,m ∈ Z. ΄Εστω z ∈ ℓ2(ZN) και m ∈ Z, τότε:

Az(m) =
N−1∑
n=0

am,nz(n) =
N−1∑
n=0

b(m− n)z(n) = b ∗ z(m)

Δηλαδή: T (z) = Az = b ∗ z για κάθε z ∈ ℓ2(ZN). Οπότε T ≡ Tb. Επομένως ο T είναι
τελεστής συνέλιξης.

(iii. ⇒ i.) ΄Εστω b ∈ ℓ2(ZN) και Tb τελεστής συνέλιξης. Θέλουμε να δείξουμε ότι o Tb

είναι μεταθετικά αναλλοίωτος. ΄Εστω z ∈ ℓ2(ZN) και k ∈ Z. Τότε για κάθε m ∈ Z έχουμε:

(Tb(Rkz))(m) = (b ∗Rkz)(m) =
N−1∑
n=0

b(m− n)Rkz(n) =
N−1∑
n=0

b(m− n)z(n− k) (1.39)

Για να συνεχίσουμε την απόδειξη θα χρειαστούμε το παρακάτω λήμμα.
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Λήμμα 1.2. ΄Εστω περιοδική συνάρτηση h συνάρτηση ορισμένη στο Z με περίοδο N .
Τότε για κάθε m ∈ Z ισχύει το ακόλουθο:

m+N−1∑
n=m

h(n) =
N−1∑
n=0

h(n) (1.40)

Με άλλα λόγια οποιοδήποτε μερικό άθροισμα μήκους N μίας περιοδικής συνάρτησης με
περίοδο N δίνει το ίδιο αποτέλεσμα.

Απόδειξη. Ορίζουμε

Sm =
m+N−1∑
n=m

h(n) = h(m) + h(m+ 1) + · · ·+ h(m+N − 1)

τότε

Sm+1 =
m+N∑

n=m+1

h(n) = h(m+ 1) + h(m+ 2) + · · ·+ h(m+N)

όμως

Sm+1 − Sm = h(m+N)− h(m) = 0.

Δηλαδή

Sm = Sm+1.

Επομένως για m = 0 θα έχουμε

S0 = S1 = · · · = Sn για κάθε n ∈ Z.

Επιστρέφουμε στην απόδειξη και στην εξίσωση (1.39), όπου θα κάνουμε την αντικατάσταση
n− k = l και θα έχουμε:

(Tb(Rkz))(m) =
N−k−1∑
l=−k

b(m− l − k)z(l)

=
N−1∑
l=0

b(m− l − k)z(l)

= b ∗ z(m− k)

= (Rkb ∗ z)(m)

= (RkTb(z))(m)

΄Οπου για σταθεροποιημένα m, k ∈ Z, και b, z ∈ ℓ2(ZN) θεωρήσαμε τη συνάρτηση hmk :
Z → C με τύπο hmk(l) = b(m − l − k)z(l), η οποία είναι περιοδική (αφού και τα b, z
είναι περιοδικά - με περίοδο N), και τώρα από το λήμμα 1.2 φτάνουμε στο επιθυμητό
αποτέλεσμα. Δηλαδή δείξαμε ότι:

Tb(Rkz) = RkTb(z)

΄Αρα ο T είναι μεταθετικά αναλλοίωτος.

Μέχρι τώρα έχουμε δείξει ότι: i. ⇒ ii. ⇒ iii. ⇒ i.

Τώρα θα συνεχίσουμε με ένα μικρό αλλά πολύ σημαντικό λήμμα.
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Λήμμα 1.3. Για κάθε w ∈ ℓ2(ZN) ισχύει ότι w ∗ δ = w.

Απόδειξη. Για κάθε m ∈ ZN έχουμε:

(w ∗ δ)(m) =
N−1∑
n=0

w(m− n)δ(n) = w(m)

΄Αρα

w ∗ δ = w

Σχόλιο. Το λήμμα 1.3 έχει την ακόλουθη ερμηνεία. ΄Εστω ότι έχουμε ένα γραμμικό μετασχη-
ματισμό T στο ℓ2(ZN) (μπορούμε να θεωρήσουμε ότι ο τελεστής μοντελοποιεί έναν ενισχυτή).
Και αυτός ο τελεστής είναι μεταθετικά αναλλοίωτος. Μέχρι τώρα στην απόδειξη έχουμε
δείξει ότι κάθε μεταθετικά αναλλοίωτος γραμμικός μετασχηματισμός είναι τελεστής συνέλιξης

Tb για κάποιο b ∈ ℓ2(ZN). Εάν γνωρίζουμε το b, τότε γνωρίζουμε πως επενεργεί ο τελεστής
πάνω στο z (ή πως επενεργεί η ενισχυτής πάνω σε ένα σήμα). Το λήμμα 1.3 μας δείχνει
πως μπορούμε να προσδιορίσουμε εύκολα το b, αρκεί απλώς αρκεί απλώς να πάρουμε το
T (δ) = Tb(δ) = b ∗ δ = b. ΄Οπως προαναφέραμε το δ ονομάζεται unit impulse, έτσι το b
πολλές φορές συναντάτε με τον όρο impulse response του συστήματος.

Τώρα θα δούμε πως επενεργεί ο Διακριτός Μετασχηματισμός Fourier (DFT) στη συνέλιξη.

Λήμμα 1.4. ΄Εστω z, w ∈ ℓ2(ZN). Τότε για κάθε m ∈ Z ισχύει ότι:

(z ∗ w)̂(m) = ẑ(m)ŵ(m)

Απόδειξη. ΄Εστω z, w ∈ ℓ2(ZN) και m ∈ Z. Από τον ορισμό 1.2 έχουμε:

(z ∗ w)̂(m) =
N−1∑
n=0

(z ∗ w)(n)e−2πimn/N

=
N−1∑
n=0

N−1∑
k=0

z(n− k)w(k)e−2πimn/N

=
N−1∑
n=0

N−1∑
k=0

z(n− k)w(k)e−2πim(n−k)/Ne−2πimk/N

=
N−1∑
k=0

N−1∑
n=0

z(n− k)w(k)e−2πim(n−k)/Ne−2πimk/N

=
N−1∑
k=0

w(k)e−2πimk/N

N−1∑
n=0

z(n− k)e−2πim(n−k)/N (1.41)

τώρα στο μερικό άθροισμα
∑N−1

n=0 z(n− k)e−2πim(n−k)/N
κάνω την αντικατάσταση n− k = l

οπότε γίνεται:
N−1∑
n=0

z(n− k)e−2πim(n−k)/N =
N−k−1∑
l=−k

z(l)e−2πiml/N
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όπου λόγω περιοδικότητας μπορούμε να χρησιμοποιήσουμε το λήμμα 1.2, οπότε θα έχουμε:

N−k−1∑
l=−k

z(l)e−2πiml/N =
N−1∑
l=0

z(l)e−2πiml/N = ẑ(m)

Η τελευταία ισότητα προκύπτει από το τύπο (1.9). Οπότε επιστρέφοντας στην εξίσωση
(1.41) θα πάρουμε:

N−1∑
k=0

w(k)e−2πimk/N

N−1∑
n=0

z(n− k)e−2πim(n−k)/N =
N−1∑
k=0

w(k)e−2πimk/N ẑ(m)

= ẑ(m)
N−1∑
k=0

w(k)e−2πimk/N

= ẑ(m)ŵ(m)

Σχόλιο. Δηλαδή ο διακριτός μετασχηματισμός Fourier μετατρέπει την ”περίπλοκη” πράξη
της συνέλιξης σε έναν ”απλό” πολλαπλασιασμό.

(iii. ⇔ iv.) ΄Εστω Tb τελεστής συνέλιξης για κάποιο b ∈ ℓ2(ZN), τότε επιλέγουμε m = b̂
και θεωρούμε τον πολλαπλασιαστή Fourier T(m), οπότε για κάθε z ∈ ℓ2(ZN) έχουμε:

Tb(z) = b ∗ z = ((b ∗ z)̂)̌

και από το λήμμα 1.4 άυτό μας δίνει:

((b ∗ z)̂)̌ = (b̂ẑ)̌ = (mẑ)̌ = T(m)(z)

Δηλαδή Tb ≡ T(m).
Αντίστροφα, έστω T(m) πολλαπλασιαστής Fourier για κάποιο m ∈ ℓ2(ZN), τότε επιλέγουμε
b = m̌ και θεωρούμε τον τελεστή συνέλιξης Tb, και αξιοποιώντας πάλι το λήμμα 1.4, για
κάθε z ∈ ℓ2(ZN) θα έχουμε:

T(m)(z) = (mẑ)̌ = (b̂ẑ)̌ = ((b ∗ z)̂)̌ = b ∗ z = Tb(z)

Δηλαδή T(m) ≡ Tb

Για την τελευταία συνεπαγωγή (iv. ⇔ v.) θα δείξουμε ότι ένας γραμμικός τελεστής T
είναι πολλαπλασιαστής Fourier αν και μόνον αν ο πίνακας D που αναπαριστά τον T ως
προς τη βάση Fourier ([T (z)]F = D[z]F) είναι διαγώνιος.

(iv. ⇒ v.) ΄Εστω T(m) πολλαπλασιαστής Fourier για κάποιο m ∈ ℓ2(ZN). Θεωρούμε τον
διαγώνιο πίνακα D = [dm,n]0≤m,n≤N−1 με dn,n = m(n) για κάθε n ∈ {0, 1, . . . , N − 1} Από
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τις σχέσεις (1.17), (1.38) έχουμε:

[T(m)(z)]F = (T(m)(z))̂ =


m(0)ẑ(0)
m(1)ẑ(1)

.

.

.
m(N − 1)ẑ(N − 1)



=


d0,0ẑ(0)
d1,1ẑ(1)

.

.

.
dN−1,N−1ẑ(N − 1)



=


d0,0 0 . . . 0
0 d1,1 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . dN−1,N−1




ẑ(0)
ẑ(1)
.
.
.

ẑ(N − 1)


= D[z]F

Δηλαδή καταλήξαμε στο ότι ο κάθε πολλαπλασιαστής Fourier T(m) αναπαριστάται από έναν

διαγώνιο πίνακα D ως προς τη βάση Fourier.

(v. ⇒ iv.) ΄Εστω γραμμικός τελεστής T o οποίος αναπαριστάται από διαγώνιο πίνακα D =
[dm,n]0≤m,n≤N−1 ως προς τη βάση Fourier (Δηλαδή [T (z)]F = D[z]F ). Τότε θεωρούμε
το διάνυσμα m ∈ ℓ2(ZN) τέτοιο ώστε m(n) = dn,n για κάθε n ∈ {0, 1, . . . , N − 1} και
θεωρούμε επίσης τον πολλαπλασιαστή Fourier T(m) και θα έχουμε:
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[T (z)]F = D[z]F =


d0,0 0 . . . 0
0 d1,1 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . dN−1,N−1




ẑ(0)
ẑ(1)
.
.
.

ẑ(N − 1)



=


d0,0ẑ(0)
d1,1ẑ(1)

.

.

.
dN−1,N−1ẑ(N − 1)



=


m(0)ẑ(0)
m(1)ẑ(1)

.

.

.
m(N − 1)ẑ(N − 1)


= (T(m)(z))̂

Δηλαδή T ≡ T(m)

Σχέση η οποία ολοκληρώνει την απόδειξη του θεωρήματος 1.3.

Τα αποτελέσματα του θεωρήματος 1.3 έχουν άμεση πρακτική εφαρμογή στους υπολογισμούς,
καθώς κάθε γραμμικός μετασχηματισμός T που είναι μεταθετικά αναλλοίωτος αναπαρίσταται
στην Ευκλείδεια βάση από έναν κυκλικό πίνακα A. Θεωρώντας το διάνυσμα b ως την πρώτη
στήλη του A, ο μετασχηματισμός ταυτίζεται με τον τελεστή συνέλιξης Tb, ενώ ορίζοντας το

m = b̂, ο T λειτουργεί ως πολλαπλασιαστής Fourier T(m). Κατασκευάζοντας τον διαγώνιο
πίνακα D με στοιχεία dn,n = m(n), επιτυγχάνεται η αναπαράσταση του T στη βάση Fourier
([T (z)]F = D[z]F , και αξιοποιώντας τη σχέση WNz = ẑ οδηγούμαστε στη σχέση A =
W−1

N DWN . Η σχέση αυτή συνιστά μια διαγωνιοποίηση του A, όπου το σημαντικότερο
πόρισμα είναι πως οι ιδιοτιμές του κυκλικού πίνακα A ταυτίζονται με τις συνιστώσες του
διανύσματος m, προσφέροντας έτσι μια υπολογιστικά πολύ πιο απλή μέθοδο εύρεσής τους
σε σχέση με την επίλυση του χαρακτηριστικού πολυωνύμου.
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2 Ο Ταχύς Μετασχηματισμός Fourier (FFT)

Στο προηγούμενο κεφάλαιο είδαμε το βασικό πλεονέκτημα της βάσης Fourier: οι μεταθετικά
αναλλοίωτοι γραμμικοί μετασχηματισμοί διαγωνοποιούνται από αυτήν. Η δεύτερη σημαντική
ιδιότητα της βάσης Fourier είναι ότι ο Διακριτός Μετασχηματισμός Fourier (DFT) μπορεί να
υπολογιστεί μέσω ενός εξαιρετικά γρήγορου αλγορίθμου, γνωστού ως Ταχύς Μετασχημα-
τισμός Fourier (Fast Fourier Transform - FFT). Οι σημειώσεις του κεφαλαίου αυτού έχουν
εκπονηθεί έπειτα από μελέτη του βιβλίου του M. W. Frazier [MF].

Ας εξετάσουμε το υπολογιστικό κόστος για την αλλαγή βάσης ενός τυχαίου διανύσματος

z. ΄Εστω z ∈ ℓ2(ZN) και B μία βάση του ℓ2(ZN). Θεωρούμε A τον πίνακα αλλαγής βάσης
από την Ευκλείδεια βάση E στη βάση B, δηλαδή Az = [z]B.

Για κάθε m ∈ {0, 1, . . . , N − 1}, ο υπολογισμός του Az(m) =
∑N−1

n=0 αm,nz(n) απαιτεί N
μιγαδικούς πολλαπλασιασμούς.

(Σημείωση 1η: Στον υπολογισμό των πράξεων θα μετράμε μόνο τις πράξεις του πολλαπλασι-
ασμού, καθώς για έναν υπολογιστή η πράξη της πρόσθεσης εκτελείται συγκριτικά πολύ πιο
γρήγορα. Σημείωση 2η: ΄Ενας μιγαδικός πολλαπλασιασμός απαιτεί κανονικά τέσσερις πραγ-
ματικούς πολλαπλασιασμούς, αν και με κατάλληλη τεχνική μπορεί να μειωθεί στους τρεις).

Εφόσον το διάνυσμα Az έχει N στοιχεία, απαιτούνται συνολικά O(N2) πολλαπλασιασμοί
για τον υπολογισμό του. Με τον αλγόριθμο FFT θα δούμε πόσο δραστικά μπορούμε να
μειώσουμε το κόστος αυτών των πράξεων. Ξεκινάμε με την πιο απλή εκδοχή του FFT, εκεί
όπου το μήκος N του διανυσματικού χώρου είναι άρτιο, η οποία αρκεί για να αναδειχθεί η
βασική ιδέα πίσω από τον αλγόριθμο.

Λήμμα 2.1. Θεωρούμε M ∈ Nκαι N = 2M , ΄Εστω z ∈ ℓ2(ZN) και θεωρούμε u, v ∈
ℓ2(ZM) τέτοια ώστε:

u(k) = z(2k) για k = 0, 1, . . . ,M − 1

και

v(k) = z(2k + 1) για k = 0, 1, . . . ,M − 1

Με άλλα λόγια,
u = (z(0), z(2), . . . , z(N − 2))

και

v = (z(1), z(3), . . . , z(N − 1))

Θεωρούμε ẑ να είναι ο DFT του του z όπως ορίστηκε 1.2, και από τον τύπο (1.22) έχουμε
ότι ẑ = WNz, αντίστοιχα θεωρούμε και τα διανύσματα û, v̂, όπου û = WMu και v̂ = WMv.
Τότε για m = 0, 1, . . . ,M − 1,

ẑ(m) = û(m) + e−2πim/N v̂(m). (2.1)

Επίσης για m = M,M + 1, . . . , N − 1, θεωρούμε l = m − M (παρατηρούμε πάλι ότι
l ∈ {0, 1, . . . ,M − 1}). Τότε

ẑ(m) = ẑ(l +M) = û(l)− e−2πil/N v̂(l). (2.2)
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Απόδειξη. ΄Εστω z ∈ ℓ2(ZN). Από τον τύπο (1.9) θα έχουμε για κάθε m = 0, 1, . . . ,M − 1

ẑ(m) =
N−1∑
n=0

z(n)e−2πimn/N

=
M−1∑
k=0

z(2k)e−2πim(2k)/N +
M−1∑
k=0

z(2k + 1)e−2πim(2k+1)/N

=
M−1∑
k=0

u(k)e−2πimk/(N/2) + e−2πim/N

M−1∑
k=0

v(k)e−2πimk/(N/2)

=
M−1∑
k=0

u(k)e−2πimk/M + e−2πim/N

M−1∑
k=0

v(k)e−2πimk/M

= û(m) + e−2πim/N v̂(m)

Ενώ για m ∈ {M,M + 1, . . . , N − 1} θέτουμε l = m −M , οπότε l ∈ {0, 1, . . . ,M − 1}.
και m = l +M :

ẑ(m) = ẑ(l +M)

=
N−1∑
n=0

z(n)e−2πi(l+M)n/N

=
M−1∑
k=0

z(2k)e−2πi(l+M)(2k)/N +
M−1∑
k=0

z(2k + 1)e−2πi(l+M)(2k+1)/N

=
M−1∑
k=0

u(k)e−2πi(l+M)k/N +
M−1∑
k=0

v(k)e−2πi(2kl+l+2kM+M)/N

=
M−1∑
k=0

e−2πiku(k)e−2πilk/N +
M−1∑
k=0

v(k)e−2πi2lk/N−2πil/N−2πik−2πiM/N

=
M−1∑
k=0

u(k)e−2πilk/M − e−2πil/N

M−1∑
k=0

v(k)e−2πilk/M

= û(l)− e−2πil/N v̂(l)

Παρατήρηση. Για τον υπολογισμό του ẑ χρειάζεται να υπολογίσουμε τα û,v̂, τα οποία είναι
διάστασης M = N/2, δηλαδή απαιτούν M2

μιγαδικούς πολλαπλασιασμούς για τον υπολ-

ογισμό τους. Στη συνέχεια πρέπει να υπολογίσουμε το γινόμενο e−2πim/N v̂(l) για κάθε
l = 0, 1, . . . ,M − 1, δηλαδή άλλους M το πλήθος μιγαδικούς πολλαπλασιασμούς. Οι υπ-
όλοιπες πράξεις για τον υπολογισμό του ẑ είναι προσθέσεις και αφαιρέσεις τις οποίες (κατά
σύμβαση) δεν μετράμε. Συνολικά απαιτούνταιM2+M2+M = 2N2/4+N/2 = 1/2(N2+N)
το πλήθος πράξεις, όπου για μεγάλα N αυτό ισοδυναμεί ουσιαστικά με N2/2 το πλήθος
πράξεις. Σε σύγκριση με τον απευθείας υπολογισμό του ẑ του οποίου το κόστος ήταν
N2, μέσω αυτή της διαδικασίας το κόστος το κόστος πράξεων μειώθηκε στο μισό. Σε
περίπτωση που το N διαιρούταν με το 4 (δηλαδή: N = 4M), θα μπορούσε να επαναλ-
ηφθεί άλλη μία φορά αυτή η διαδικασία (καθώς η διάσταση των û, v̂ θα ήταν άρτια, θα
μπορούσε να επαναληφθεί η διαδικασία και για αυτά), οπότε το κόστος των πράξεων θα
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ήταν 2M2 + 2M2 + 2M = 2(N2/8 + N/2), όπου για μεγάλα N , είναι περίπου N2/4. Ας
περιγράψουμε πιο γενιά την παραπάνω διαδικασία. Συμβολίζουμε με #N τον ελάχιστο αριθμό

πράξεων που απαιτούνται για τον υπολογισμό του DFT (ẑ) ενός διανύσματος z διάστασης
N . Τότε για N = 2M ισχύει η ανισότητα:

#N ≤ 2#M +M, (2.3)

εύκολα μπορεί να καταλάβει κάποιος ότι αυτή η διαδικασία βελτιστοποιείται όταν το N η
δύναμη του δύο.

Θεώρημα 2.1. Θεωρούμε N = 2n, όπου n ∈ N, έστω z ∈ ℓ2(ZN). Τότε #N ≤ 1
2
Nlog2N .

Απόδειξη. Η απόδειξη γίνεται με επαγωγή στο n.

Βήμα 1o: Βασικό βήμα
Για n = 1. Τότε το z θα είναι της μορφής z = (a, b), όπου a, b ∈ C. Θυμόμαστε από
το παράδειγμα 1.1 ότι

W2 =

[
1 1
1 −1

]
επομένως

ẑ = W2z =

[
1 1
1 −1

] [
a
b

]
=

[
a+ b
a− b

]
Δηλαδή ο υπολογισμός του ẑ απαιτεί 0 μιγαδικούς πολλαπλασιασμούς. Οπότε

#2 = 0 ≤ 1 = (2/2)log22

Βήμα 2o: Επαγωγική Υπόθεση
Υποθέτουμε ότι η σχέση ισχύει για n = k − 1, δηλαδή

#2k−1 ≤ 1

2
(2k−1)log22

k−1 = 2k−2(k − 1) (2.4)

Βήμα 3o: Επαγωγικό Βήμα
Για n = k από τον τύπο (2.3), και την επαγωγική υπόθεση προκύπτει ότι:

#2k ≤ 2#2k−1 + 2k−1 ≤ 22k−2(k − 1) + 2k−1 = 2k−1k =
1

2
2klog22

k

Το οποίο επαληθεύει την επαγωγική υπόθεση και ολοκληρώνει την απόδειξη.

Συνεχίζουμε με την πιο γενική περίπτωση όπου το N είναι της μορφής N = pq, όπου
p, q ∈ N.

Θεώρημα 2.2. ΄Εστω p, q ∈ N και N = pq, έστω z ∈ ℓ2(ZN). Ορίζουμε w0, w1, . . . , wp−1 ∈
Zq με

wl(k) = z(kp+ l), για k ∈ {0, . . . , q − 1}
Για b = 0, 1, . . . , p− 1 ορίζω vb ∈ ℓ2(ZN) ως εξής

vb(l) = e−2πibl/N ŵl(b) για l ∈ {0, . . . , p− 1}

Τότε για a = 0, 1, . . . , p− 1 και b = 0, 1, . . . , q − 1,

ẑ(aq + b) = v̂b(a) (2.5)
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Παρατήρηση. Από τον αλγόριθμο της διαίρεσης, κάθε m ∈ {0, 1, . . . , N − 1} γράφεται
m = aq + b για κάποιο a ∈ {0, 1, . . . , p− 1} και b ∈ {0, 1, . . . , q − 1}. Οπότε ο τύπος (2.5)
καθορίζει πλήρως τον (DFT) του z.

Απόδειξη. ΄Εστω n ∈ {0, 1, . . . , N − 1}. Τότε από τον αλγόριθμο της διαίρεσης το n
γράφεται κατά μοναδικό τρόπο στη μορφή kp + l για κάποια k ∈ {0, 1, . . . , q − 1} και
l ∈ {0, 1, . . . , p− 1}. Από τον τύπο (1.9) έχουμε:

ẑ(m) = ẑ(aq + b) =
N−1∑
n=0

z(n)e−2πi(aq+b)n/N =

p−1∑
l=0

q−1∑
k=0

z(kp+ l)e−2πi(aq+b)(kp+l)/(pq) (2.6)

όμως

(aq + b)(kp+ l)/(pq) = (aqkp+ aql + kpb+ bl)/pq = ak + al/p+ kb/q + bl/(pq)

οπότε

e−2πi(aq+b)(kp+l)/(pq) = e−2πiake−2πial/pe−2πikb/qe−2πibl/(pq)

= e−2πial/pe−2πikb/qe−2πibl/(pq)

έτσι αντικαθιστώντας στην (2.6) τις (2.2), (2.2) θα έχουμε

ẑ(aq + b) =

p−1∑
l=0

q−1∑
k=0

z(kp+ l)e−2πi(aq+b)(kp+l)/(pq)

=

p−1∑
l=0

q−1∑
k=0

wl(k)e
−2πial/pe−2πikb/qe−2πibl/(pq)

=

p−1∑
l=0

e−2πial/pe−2πibl/(pq)

q−1∑
k=0

wl(k)e
−2πikb/q

=

p−1∑
l=0

e−2πial/pe−2πibl/N ŵl(b)

=

p−1∑
l=0

e−2πial/pvb(l)

= v̂b(a)

Αυτή η απόδειξη δείχνει τη βασική αρχή πίσω από τον αλγόριθμο FFT, η οποία έγκειται στην
αποφυγή υπολογισμού ποσοτήτων που επαναλαμβάνονται. Συγκεκριμένα κατά τον υπολο-
γισμό του ẑ(aq + b) τα vb(l) ∈ {0, 1, . . . , p− 1} παραμένουν ίδια για κάθε a. Ο αλγόριθμος
το ”αναγνωρίζει” αυτό και τα υπολογίζει μόνο μία φορά. ΄Ενας άμεσος υπολογισμός του ẑ
θα τα υπολόγιζε αυτά κάθε φορά.

Οι πράξεις για τον υπολογισμό του ẑ αξιοποιώντας τον αλγόριθμο για N = pq θα είναι:

• Κάθε ŵl απαιτεί #q πράξεις (μιγαδικούς πολλαπλασιασμούς). Επομένως για τον υπ-
ολογισμό των {ŵ0, ŵ1, . . . , ŵp−1} απαιτούνται p#q πράξεις.
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• Τα vb(l) (vb(l) = e−2πibl/N ŵl(b) είναι q το πλήθος και έχουν διάσταση p) απαιτούν pq
πράξεις.

• Τα v̂b απαιτούν #p για κάθε b, άρα q#p πράξεις

Αθροίζοντας τα παραπάνω θα έχουμε:

#N = #pq ≤ p#q + p#p + pq (2.7)

Εύκολα καταλαβαίνει κανείς ότι όσο πιο σύνθετος είναι ο αριθμός τόσο περισσότερο μπορούμε

να εκμεταλλευτούμε τα πλεονεκτήματα του αλγόριθμου. Με βέλτιστη περίπτωση το N να
είναι δύναμη του 2. Καθώς μπορούμε να κάνουμε επαναλαμβανόμενη χρήση του αλγορίθμου.
Σε περιπτώσεις που η διάσταση N δεν είναι υπολογιστικά βολική, τα δεδομένα μπορούν είτε
να κατατμηθούν σε τμήματα κατάλληλου μεγέθους, είτε να επεκταθούν με την προσθήκη
μηδενικών στο τέλος, ώστε το νέο μήκος να διευκολύνει την εφαρμογή του αλγορίθμου.
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