
Hawking’s Incompleteness Theorem

Kostas Triamatakis

October 30, 2025

1



“...Remember to look up at the stars and not down at your feet.
While there is Life, there is Hope...”

Stephen Hawking
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Introduction

In this small project our main goal is to present one of the great results of General Relativity proved by
Stephen Hawking in his dissertation in 1966. The famous theorem, mostly known as Hawking’s singularity
theorem, asserts that under certain conditions our spacetime exhibits incompleteness along its timelike
geodesics. Our goal, in these notes, is to provide all the necessary tools and bibliography for someone to
comprehend the theorem and its proof.

I would like to express my gratitude to professor Grigorios Fournodavlos for trusting me with this project
and for granting me a scholarship under the SINGinGR-Proj. 101078061 program which allows me to
focus on my graduate studies.

Preliminaries from differential geometry

Smooth manifolds

In this subsection we mention necessary tools from the theory of smooth manifolds. It is based on the
books of Lee and Tu, (JL) and (LT), respectively.
A very important result asserts the existence of partitions of unity subordinated to some cover. This key
concept allows one to extend smooth functions, fields, forms etc.

Theorem 2.1. If M is a smooth manifold then for any open cover (Ua)a∈A there exists a smooth partition
of unity (ψa)a∈A subordinated to this cover. That is, that there exists a family of smooth functions ψa :
M → R which satisfies:
a). 0 ≤ ψa(x) ≤ 1 for all x ∈M and a ∈ A.
b). supp(ψa) ⊆ Ua for each a ∈ A.
c). The set {supp(ψa) : a ∈ A} is locally finite. That is, for every point p ∈M there exists a neighborhood
of that point which intersects only finite elements of that set.

d).
∑
a∈A

ψa(x) = 1, for all x ∈M .

Notice that the sum on d). is a finite sum for every x because of c).

Another useful notion in differential topology that plays a central role in general relativity is the notion
of submanifolds. Here we define the embedded submanifolds.

Definition 2.1. An S ⊂ M is called a smooth k−submanifold of M if for all p ∈ S there is a smooth
chart (U,φ) of p ∈M such that

φ(U ∩ S) = {(x1, . . . , xn) ∈ φ(U) : xk+1 = · · · = xn = 0}.

(U,φ) is, then, called a slice-chart. The topology of S is the one that it inherits from M and the atlas of
S that makes it a smooth k− manifold is AS := {(U ∩ S, φ|U∩S) : (U,φ) is a slice-chart}. An embedded
submanifold of dimension dim(M)− 1 is called a hypersurface.
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A curve γ : I → M is said to be an integral curve of X ∈ X(M) if and only if γ̇(t) = Xγ(t).The following
result is immediate from ODE theory.

Theorem 2.2. If X ∈ X(M) then for all p ∈M there exists a unique integral curve γ : (−ε, ε) →M such
that γ(0) = p. That is, 

γ̇(t) = Xγ(t)

γ(0) = p

.

The integral curve γ has a maximal extension. If all integral curves of X ∈ X(M) can be extended to the
whole real line we say the field is complete.

Similarly to integral curves, there exists a map which is called the flow of the vector field and it is defined
by the following theorem.

Theorem 2.3. If X ∈ X(M) and p ∈ M then there exists an ε > 0, a neighborhood U of p and map
φ : (−ε, ε)× U →M with the property:

∂φ

∂t
(t, q) = Xφ(t,q)

φ(0, q) = q

, ∀ (t, q) ∈ (−ε, ε)× U.

From the above theorem one can immediately see that the set {φt}t∈(−ε,ε) defines a group of local diffeo-
morphisms. Indeed, the set satisfies the group axioms as follows:
a). φt ◦ φs = φt+s for when some handside is well defined (and so the operation is associative and com-
mutative).
b). φ0 = id.
c). φ−1

t = φ−t.
It can be proved that two fields commute if and only if their flows commute.

We conclude this section by introducing the notions of connections and geodesics. We follow (KA, p. 35).

Definition 2.2. A connection on a smooth manifold M is a map ∇ : X(M) × X(M) → X(M) which we
denote by X(M)× X(M) ∋ (X,Y ) 7→ ∇XY ∈ X(M) and satisfies:
a). It is R-bilinear.
b). It is C∞(M)−linear with respect to the first variable, that is ∇fXY = f∇XY
c). It is a derivation with respect to the second variable, that is ∇X(fY ) = Xf · Y + f∇XY .
It can be proved that the field ∇XY depends locally on X and Y and pointswise with respect to X. In fact,
it can be shown that (∇XY )p depends pointwise with respect to X (i.e. Xp) and on the values of Y along
any smooth curve that satisfies γ̇(0) = Yp.
A connection is called symmetric if its torsion, T (X,Y ) := ∇XY − ∇YX − [X,Y ], vanishes identically.
Given any local frame {E1, . . . , En} we define the Christoffel symbols of the connection with respect to that

frame as ∇Ei
Ej :=

n∑
k=1

ΓkijEk.

The field ∇XY is called the covariant derivative of Y along X.

The local expression of the connection with respect to any local frame is

∇XY =
∑
k

(
X(Y k) +

∑
i,j

XiY jΓkij

)
Ek.

A connection is symmetric, then, if and only if for any local and commutative frame 1 we have Γkij = Γkji.

1[Ei, Ej ] = 0
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Theorem 2.4. Given a smooth curve γ : I →M we consider the vector space:

X(γ) := {X : I → TM : For all t ∈ I, Xt ∈ Tγ(t)M}

which is the space of all smooth vector fields defined on γ. Then there exists a unique, linear operator

D

dt
: X(γ) → X(γ)

with the following properties:

a).
D(fX)

dt
= f ′X + f

DX

dt
, for all smooth functions f : I → R and fields X ∈ X(γ).

b). For any smooth extensions Γ, X̄ ∈ X(M) of γ̇ and X, respectively, it holds
DX

dt
= ∇ΓX̄ and since

the field ∇ΓX̄ depends only on Γγ(t) = γ̇(t) and values of X̄ along any curve with velocity γ̇(t) (take γ)

we can write, without loss of generality,
DX

dt
= ∇γ̇X for each t ∈ I. Thus the local expression reads:

DX

dt
=

∑
k

(
X ′
k +

∑
i,j

γ′iXjΓ
k
ij

)
∂

∂xk
.

The operator defined above is called the covariant derivative on γ and measures how much a field changes
by moving on γ with respect to γ.

We call X ∈ X(γ) parallel if
DX

dt
= 0 for all t ∈ I. Geometrically, that means that if an observer walks

alongside X then they see no change of X as they move on γ. The following theorem is obvious from the
theory of ODE’s.

Proposition 2.1. For all smooth curves γ : (−ε, ε) →M and all v ∈ Tγ(0)M there exists a unique smooth
and parallel vector field along γ, X ∈ X(γ), with initial condition v. That is, X solves the ODE system

DX

dt
= 0,

X0 = v

.

X is called the parallel translation of v along γ. Thus an isomorphism of tangent spaces is induced by
considering τa,b : Tγ(a)M → Tγ(b)M such that τa,b(v) := Xb where X is the parallel translation of v along
γ.

Finally, we define geodesics. Intuitively, a geodesic is a curve in which a particle moving along γ feels no
change of direction. We could say that the particle feels no force or that it moves along a ”straight line”.

Definition 2.3. A geodesic γ : I →M is a smooth curve that satisfies
Dγ̇

dt
= 0. The expression

Dγ̇

dt
= 0.

is, locally, equivalent to a system of ODE’s that reads:

γ′′k +
∑
i,j

γ′iγ
′
jΓ
k
ij = 0, k = 1, . . . , n.

The next theorem asserts that locally, for all points and all possible initial velocities there exists a unique
geodesic with this initial data.

Theorem 2.5. For all (p, v) ∈ TM , that is for all p ∈ M and v ∈ TpM , there exists, locally in time, a
unique geodesic γ : (−ε, ε) →M satisfying γ(0) = p and γ̇(0) = v.
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A smooth manifold with a connection (M,∇) is called complete if any geodesic can be extended (as a
geodesic) to the whole real line. This definition of completeness is strongly connected to the completeness
of a vector field defined on TM which we call the geodesic field. Its flow is called the geodesic flow. We
say M is complete if and only if the geodesic field of M is complete. It can be proven that its integral
curve on (p, v) ∈ TM is of the form (γ(t), γ̇(t)) where γ is the (p, v)-geodesic.
Finally, we consider the set E := {(p, v) ∈ TM : the (p, v)−geodesic is defined on [0, 1]} which is an
open set of TM. We define the exponential map exp : E → M as exp(p, v) := γ(p,v)(1)

2 and the
restriction of it on TpM as (exp)p(v) := γ(p,v)(1). It holds that (exp)p(tv) = γ(p,v)(t) and that (exp)p
is a local diffeomorphism at 0 ∈ TpM. By considering a linear isomorphism from TpM to Rn we have
that h ◦ (exp)−1

p : expp (U) → U ⊆ Rn where U ⊆ TpM the neighborhood in which (exp)p is a local
diffeomorphism then we get what we call the geodesic or normal coordinates of M . In these coordinates
the ”center” of the neighborhood, p, is mapped to 0 ∈ Rn and all geodesics emitting from p are mapped
to straight lines which pass through the origin. From the geodesic equations it’s immediate that at p we
have Γkij(p) = −Γkji(p) and thus if the connection is symmetric we get that the Christoffel symbols vanish
at p. A neighborhood of p ∈ M , U = expp(V ) ∼= V where V is a star-shaped neighborhood of 0 ∈ TpM
and mapped diffeormorphically to U by the exponential map at p shall be called a normal neighborhood
from now on.

Pseudo-Riemannian geometry

Our geometric setting is that of Pseudo-Riemannian/Semi-Riemannian manifolds. In this section we will
mention almost all of the results that we are going to need. We will omit the proofs for the majority of
the theorems mentioned but a bibliographical reference will always be included.
The biggest part of this section are notes taken from the books (BO) and (KA).

Definition 2.4. A symmetric, bilinear form on a vector space V , b : V × V → R, is called a posi-
tive/negative definite form (scalar product) when for all v ∈ V , b(v, v) > 0 (b(v, v) < 0). Positive/negative
semidefinite when b(v, v) ≥ 0 (b(v, v) ≤ 0) while it is called non-degenerate if b(v, w) = 0, for all w ∈ V
implies v = 0. A vector space equipped with a non-degenerate form is called a scalar product space (SPS,
for short) while a subspace will be called non-degenerate if the restriction of the form to the subspace is
non-degenerate.

We say v is orthogonal to w when b(v, w) = 0. The norm of v is denoted by ∥v∥ := |b(v, v)| 12 .

Definition 2.5. In an SPS, (V, b), a vector v is called timelike if b(v, v) < 0, null/lightlike if b(v, v) = 0
and spacelike if b(v, v) > 0.

It is a matter of simple linear algebra manipulations to prove the following lemmas and theorems (see
(BO, p. 47)).

Lemma 2.6. (V, b) is an SPS if and only if for all basis (ei)
n
i=1 the matrix (bij)i,j=1,....n is invertible.

Lemma 2.7. For all W ≤ V , where V is an SPS, it holds that dim(W )+ dim(W⊥) = dim(V ) and so for
dimensional reasons it holds W⊥⊥ =W. Then since (W +W⊥)⊥ =W ∩W⊥ we have W is non-degenerate
if and only if W ∩W⊥ = 0 if and only if V =W ⊕W⊥.

A natural question that arises is whether we can have an orthonormal basis for our SPS. The answer is
positive only with a slightly different technique to prove it from the positive definite case (in which we
have an inner product and thus we can apply the Gram-Schmidt algorithm). Let V be non-trivial. Then
since b is non-degenerate there exists a w1 ̸= 0 such that b(w1, w1) ̸= 0. Consider W1 := span{w1} which
is a non-degenerate subspace and thus V = W1 ⊕W⊥

1 . Pick a non-zero w2 such that b(w2, w2) ̸= 0 (that
is always possible unless the dimension of V is exactly 1). Apparently, w1 is orthogonal to w2. Consider
then W2 := span{w1, w2} which is, also, non-degenerate and V = W2 ⊕W⊥

2 . Pick w3 appropriately as
above and let the algorithm run until we have run out of dimensions. Then we normalize our vectors. We
conclude the following theorem.

2We denote by γ(p,v) the (p, v)−geodesic.
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Theorem 2.8. Any SPS has an orthonormal basis.

It is immediate that an orthonormal basis can not contain null vectors. It contains only timelike and
spacelike vectors. We denote the basis by {e−1 , . . . , e

−
k , e

+
k+1, . . . , e

+
n } to imply that e−j is timelike and

e+i is spacelike. The number of timelike vectors is invariant of the orthonormal basis and we call it the
signature/index of the form/metric.

Proposition 2.2. If (V, b) is an SPS then in any orthonormal basis of V the number of timelike vectors
is constant. We call this number the index of the form. The index is the dimension of the maximal, in
terms of dimension, subspace which is negative definite 3.

We conclude our study of the linear algebra of scalar product spaces with the following characterization.

Theorem 2.9. Two SPS are isometric if and only if they have the same dimension and index.

Definition 2.6. A pair (M, g), where M is a smooth manifold and a symmetric, non-degenerate (0, 2)−
smooth tensor field g : X(M) × X(M) → C∞(M) of constant index 4 which we call a Pseudorieman-
nian metric, is called a Pseudoriemannian manifold. If g is positive definite then the manifold is called
Riemanian. If the index is equal to 1 then we have a Lorentzian metric and a Lorentzian manifold.

The most classical example of a Pseudoriemannian manifold is the ν-Minkowski space Rnν endowed with

the metric g := −
ν∑
j=1

dx2j +

n∑
j=ν+1

dx2j . The case ν = 1 is called the Minkowski space.

Definition 2.7. We say a connection ∇ in a Pseudoriemannian manifold with a connection, (M, g,∇),
is compatible with the metric when for all smooth curves γ and all times a, b ∈ D(γ) the parallel transport
τa, b : Tγ(a)M → Tγ(b)M is a linear isometry.

Theorem 2.10. The following are equivalent:
a). The connection ∇ is compatible with the metric.
b). For all X, Y, Z ∈ X(M) smooth vector fields it holds:

X(g(Y,Z)) = g(∇XY, Z) + g(Y,∇XZ).

c). For all smooth curves γ and all V, W ∈ X(γ) smooth vector fields on γ it holds:

d

dt
(g(V,W )) = g

(
DV

dt
,W

)
+ g

(
V,
DW

dt

)
.

Proof. See (KA, p. 51).

The fundamental theorem of Pseudoriemannian geometry asserts that given a Pseudoriemannian manifold
there always exists a unique symmetric and compatible connection. We call this connection the Levi-Civita
connection.

Theorem 2.11. Let (M, g) a Pseudoriemannian manifold. There exists a unique symmetric and compat-
ible with the metric connection which we call the Levi-Civita connection. The Christoffel symbols, in local
coordinates, read :

Γkij =
1

2

n∑
m=1

gmk
(
∂gmi
∂xj

+
∂gmj
∂xi

− ∂gij
∂xm

)
.

Proof. See (BO, p. 62).

From now on all our Pseudoriemannian manifolds will be equipped with the Levi-Civita connection. Recall
that geodesics are defined through the connection. Therefore the definition of geodesics remains the same.
An easy exercise comes as the following corollary.

3The restriction of the form to this subspace is negative definite.
4That is g assigns smoothly to every point p ∈ M , gp which is a symmetric, C∞(M)-bilinear and non-degenarate form of

index 1 on the tangent space of p. Smooth means that for all smooth vector fields X, Y g(X,Y ) is smooth.
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Corollary 2.1. In a Pseudoriemannian manifold (M, g) all geodesics have constant speed. That is, g(γ̇, γ̇)
is constant.

It can be proved that local isometries preserve the Levi-Civita connections between manifolds. Thus, a
local isometry maps geodesics to geodesics.
Since our metric is a non-degenarate, symmetric, bilinear form it assigns a scalar product to every tangent
space. Thus we can pick h : TpM → Rnν an isometry of scalar product spaces and then consider normal
coordinates with respect to this isomorphism. It follows that, since the connection is symmetric, Γkij(p) = 0,
where p is the center. Then, if gij := g(∂i, ∂j) we get

∂gij
∂xk

= g(∇∂k∂i, ∂j) + g(∂i,∇∂k∂j).

From the definition of Christoffel symbols we get
∂gij
∂xk

(p) = 0. Finally, if εi is the sign of gii then we get

gij(p) = εiδij . See (BO, p. 73).

Proposition 2.3. In normal neighborhoods all points can be connected to the center with a (radial)
geodesic. Also, our manifold is connected if and only if any two points can be connected through a broken
5 geodesic.

Proof. See (BO, p. 73).

There is a very natural isomorphism between the space of vector fields on a Pseudoriemannian manifold
and 1−forms. Consider X(M) ∋ X 7→ X∗ := g(X, ·). Since the metric is non-degenerate we have that the
mapping is injective. Applying the Riesz Representation theorem we get that for any 1−form ω ∈ Ω1(M)

there exists a vector field X in M such that ω = g(X, ·). X reads in local coordinates Xk =
∑
l

glkωl and

thus is smooth which means the above mapping is an isomorphism. Note that X∗ in local coordinates

reads X∗ =
∑
l

glkXl.

In the definition of what a pseudoriemannian metric is we used the phrase ”(0, 2)−tensor field”. An
(r, s)−tensor field of type a is a C∞(M)-multilinear form A : (Ω1(M))r × X(M)s → C∞(M) while a
(r, s)−tensor field of type b is a C∞(M)-multilinear form A : (Ω1(M))r × X(M)s → X(M). In the
relativistic literature one will encounter the notation Ai1,...,irj1,...,js

for an (r, s)-tensor field (of type a, mostly).
The formal explanation of this notation is that in local coordinates the tensor reads:

A(θ1, . . . , θr, X1, . . . , Xs) =
∑

i1,...,ir
j1,...,js

Ai1,...,irj1,...,js

∂

∂xi1
⊗ · · · ⊗ ∂

∂xir
⊗ dxj1 ⊗ · · · ⊗ dxjs(θ1, . . . , Xs),

where we denote by ⊗ the tensor product of two tensors which are (r1, s1) and (r2, s2) tensors of type a
respectively as A⊗B which is a (r1 + r2, s1 + s2)-tensor as follows:

(A⊗B)(θ1, . . . , θr1+r2 , X1, . . . , Xs1+s2) = A(θ1, . . . , θr1 , X1, . . . , Xs1) ·B(θ1, . . . , θr2 , X1, . . . , Xs2).

We will be denoting the space of all (r, s)−tensor fields of type a as Xrs(M). Notice that a vector field
X ∈ X(M) can be considered a (1, 0)−tensor field since in the following way: writeX(ω) := ω(X). 1−forms
are by definition (0, 1)−tensor fields.

Lemma 2.12. There exists a unique C∞(M)-linear operator C : X1
1(M) → C∞(M) which satisfies

C(X ⊗ θ) = θ(X). We call this operator contraction and, in a sense, it is a trace operator. In local
coordinates we have

C(A) =
∑
i

Aii =
∑
i

A(dxi, ∂xi).

5Piecewise smooth.
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The contraction operator could not have any other local representation since

C(A) = C

(∑
i,j

Aij
∂

∂xi
⊗ dxj

)
=

∑
i,j

Aij · C
(

∂

∂xi
⊗ dxj

)
=

∑
i,j

Aijδij

=
∑
i

Aii.

The method to construct these operators is very standard in differential topology. One begins by noticing
that the properties of the operator demand for a standard local representation formula. Then one considers,
locally, the operator with this formula with respect to some chart (U,φ). Finally, one shows that the
definition is independent of the chart or more specifically that in the intersection of the two open sets the
two representations agree.
We generalize, now, this operator to higher order tensors as follows:
We consider Cij : X

r
s(M) → Xr−1

s−1(M) such that:

Cij(A)(θ1, . . . , θr−1, X1, . . . , Xs−1) := C(A(θ1, . . . , θi−1, · , θi+1, . . . , θr−1, X1, . . . , Xj−1, ·, Xj , . . . , Xs−1)).

=
∑
a

A(θ1, . . . , θi−1, dxa, θi, . . . , θr−1, X1, . . . , Xj−1, ∂xa, Xj , . . . , Xs−1).

Something that we will, also, need is the raising/lowering indices operator. We define

xa
b

: Xrs(M) →

Xr+1
s−1(M) such that:(xa

b

A

)
(θ1, . . . , θr+1, X1, . . . , Xs−1) := A(θ1, . . . , θa−1, θa+1, . . . , X1, . . . , Xb−1, θ

∗
a, Xb, . . . , Xs−1),

where by θ∗ we denote the dual vector field of the 1-form. In the same way we define

ya
b

: Xrs(M) →

Xr−1
s+1(M) by sending the extra Xb vector field to the a−th forms-slot as its dual form X∗

b . Finally, we

consider Ca,b := Cab−1 ◦
xa
a

.

Definition 2.8. Given any f ∈ C∞(M) there exists a unique smooth vector field onM , which we denote by
grad(f) and call the gradient of f, that satisfies df = g(grad(f), ·). That means that grad(f) is nothing else
but the dual vector field of the differential of f. We then define the divergence of a vector field X ∈ X(M)
as div(X) := C1,2(∇X), where ∇X is the (1, 1)−tensor field which reads ∇X(ω, Y ) = ω(∇YX). For any
covariant 6 tensor field we can define for T which is a (0, s)−tensor the (0, s)-tensor ∇XT as:

(∇XT )(Y1, . . . , Ys) := X(T (Y1, . . . , Ys))−
∑
i

T (Y1, . . . ,∇XYi, . . . , Ys).

Thus we define the divergence of a symmetric (0, 2)-tensor of type a, A, as div(A) := C1,3(∇A). Finally,
we define the laplacian ∆ : C∞(M) → C∞(M) as ∆ := div ◦ grad.

Let us write some of these operators locally. First, it is immediate from a previous discussion that the
gradient is written in local coordinates as

grad(f) =
∑
i,j

gij
∂f

∂xj

∂

∂xi
.

6That is, for any (0, s)-tensor field of type a while (r, 0)-tensor fields of type a are called contravariant
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Next the divergence of a vector field can be computed from the trace formula we wrote above as

div(X) = C(∇X) =
∑
i

∇X(dxi, ∂xi)

=
∑
i

dxi(∇∂xi
X)

=
∑
i

dxi

(∑
j

∂Xj

∂xi
+

∑
l,j

Γli,jXj
∂

∂xl

)

=
∑
i

(
∂Xi

∂xi
+
∑
l

ΓjliXl

)
.

Notice that in local coordinates the Christoffel symbols vanish and so we get (only at the center) the usual
formula for the divergence of a field.
The divergence of a symmetric (0, 2)-tensor reads in local coordinates

div(A) = C1,3(∇A) = C1
2 ◦

x1

1

(∇A) =
∑
i

x1

1

(∇A)(dxi, ·, ∂xi)

=
∑
i

∇A((dxi)∗, ·, ∂xi)

=
∑
i,j,k

gij(∇A)(∂xi, ∂xj , ∂xk) dxk

and so:

div(A)k =
∑
i,j

gij
(
∂Aik
∂xj

−
∑
l

(
ΓljiAlk + ΓljkAli

))
.

Finally, by combining the results above we get the laplacian locally as:

∆f =
∑
i,j

(
gij

∂2f

∂xi∂xj
+

∂f

∂xj

(
∂gij

∂xi
+
∑
l

Γili g
lj

))

=
1√

| det(g)|

∑
i,j

∂

∂xi

(√
| det(g)|gij ∂f

∂xj

)
.

As one can notice the formula in normal coordinates agrees with the usual laplacian (modulo some signs).
For all of the above see (BO, p. 35).

One of the great protagonists in the theory of general relativity is curvature. We follow (BO, p. 74).
See, also, (KA, p. 75).

Definition 2.9. The curvature tensor is a (0, 3)−tensor of type b, R : X(M)3 → X(M) given by the
formula:

R(X,Y )Z := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

The Riemann curvature tensor is the (0, 4)−tensor of type a given by the formula:

Rm(X,Y, Z,W ) := g(R(X,Y )Z,W ).

An obvious property of the two tensors is that they are antisymmetric on the first two variables. The first
Bianchi identity asserts that:

R(X,Y )Z +R(Z,X)Y +R(Y, Z)X = 0, ∀X, Y, Z ∈ X(M).

Theorema Egregium, proved by Gauss, in elementary differential geometry asserts that the gaussian cur-
vature of a surface is an intrinsic quantity, that is it can be measured by beings that live on the surface.
We have a similar result here:
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Lemma 2.13. Set Rlijk the components of R(∂xi, ∂xj , ∂xk) with respect to the basis (∂xi)
n
i=1. Then:

Rlijk =
∂Γljk
∂xi

− ∂Γlik
∂xj

+
∑
m

(
Γmjk Γ

l
im − Γlik Γ

l
mj

)
.

Theorem 2.14 (Second Bianchi identity). It holds that:

(∇XR)(Y, Z,W ) + (∇ZR)(X,Y,W ) + (∇YR)(Z,X,W ) = 0, ∀X, Y, Z, W ∈ X(M).

In normal coordinates the above formula reads (where p ∈M is the center of the coordinate system):

∂Rmijk
∂xl

(p) +
∂Rmlik
∂xj

(p) +
∂Rmjlk
∂xi

(p) = 0.

The Riemann curvature tensor is, also, antisymmetric with respect to the third and fourth variables. The
interesting fact here is that is symmetric with respect to interchanging the couples of first and second
variable and third and fourth variable. That is, Rm(X,Y, Z,W ) = Rm(Z,W,X, Y ).

Definition 2.10. Let Π := span{w, v} ≤ TpM a two-dimensional, non-degenerate subspace. The sectional
curvature along Π is the quantity:

Kp(Π) :=
Rm(v, w,w, v)

g(v, v)g(w,w)− g(v, w)2
.

The definition is independent of the basis we pick for Π.

The fact that Π is non-degenerate asserts that the denominator is non-zero. Although the sectional
curvature is defined only for non-degenerate planes, it can be shown that for any degenerate plane there
exists a non-degenerate plane arbitrarily close to our initial plane (see (BO, p.78)).

Definition 2.11. The symmetric (0, 2)−tensor given by the formula Ricp(u, v) := Tr(Rp(·, u)v) is called
the Ricci tensor of (M, g). The Ricci curvature ofM at p along the unit vector field v ∈ TpM is the quantity
Ricp(v, v). The scalar curvature is the trace or the contraction of the Ricci tensor, i.e. Sc := C1,2(Ric).

Set Rij := Ric(∂i, ∂j). Then, Rij =
∑
m

Rmmij and Sc =
∑
i,j

gijRij . The next formula will assert, in the

next section, that the Einstein tensor is divergence-free.

Theorem 2.15 (Contracted Bianchi identity).

dSc = 2 div(Ric).

An Einstein manifold is a connected Pseudoriemannian manifold such that Ric = Λg where Λ is a constant.
If Ric = fg for some smooth function f then by taking the divergence on both sides we get div(Ric) =

div(fg) = df =
1

2
dSc. Also, Sc =

∑
ij

gijRij =
∑
ij

gijfgij = fTr(In) = nf , where n = dim(M). By

differentiating, we have dSc = ndf. Comparing the two relationships we get dSc = 0 for n ≥ 3. That

means, since M is connected, Sc is constant. Also, Ric =
Sc

n
g and thus it is an Einstein manifold.

The following results will play a significant role for our main theorem.

Lemma 2.16 (Gauss). If p ∈M , 0 ̸= x ∈ TpM and v, w ∈ Tx(TpM) with v = a · x7 then:

g((expp)∗,x(v), (expp)∗,x(w)) = v · w

where v · w implies the inner product in Tx(TpM).

Proof. See (BO, p. 127).

7By making the usual convention TpM ≃ Tx(TpM).
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Definition 2.12. A geodesically convex neighborhood is a normal neighborhood for all of its points.

Theorem 2.17. Every point admits a geodesically convex neighborhood.

Proof. See (BO, p. 130).

Corollary 2.2. A geodesic γ : [0, α) →M is extendible past α if and only if it is continuously extendible
up to α, i.e. lim

t→a
γ(t) exists.

Proof. We follow (BO, p. 130). One direction is obvious. Conversely, if we can continuously extend the
geodesic up to time α then we consider a geodesically convex neighborhood of γ(α), U . Take t0 so close
to α such that γ([t0, α]) ⊆ U . But then γ|[t0,α] is a radial geodesic for γ(t0) and thus it can be extended
till it hits the boundary of the neighborhood. But γ(α) ∈ U and so we can extend it pass α.

Recall, now, that a Lorentzian manifold (M, g) is a Pseudoriemannian manifold of index 1. If p ∈ M , its
tangent space TpM is a Lorentz vector space, that is an SPS of index 1. A subspace of a Lorentz vector
space is called spacelike if the scalar product, restricted to the subspace, is positive definite. Similary, it
is called timelike if it is non-degenerate and lightlike if it is degenerate. For the succeeding we follow (BO,
p. 126).

Lemma 2.18. If z is a timelike vector in a Lorentz vector space then {z}⊥ is a spacelike subspace. More
generally, if W is timelike then W⊥ is spacelike and conversely if W is spacelike then W⊥ is timelike.
Also, two independent null vectors can not be orthogonal.

The first claim comes from the invariance of the index (Sylvester’s inertia law) while the last claim comes
from the Cauchy-Schwartz inequality. We have the following useful characterization:

Lemma 2.19. If W ≤ V with dim(W ) ≥ 2 then the following are equivalent:
a). W is timelike.
b). There exist two independent null vectors in W.
c). There exists a timelike vector in W .

Similarly, we have a characterization for lightlike subspaces:

Lemma 2.20. If W ≤ V then the following are equivalent:
a). W is lightlike.
b). W contains a null vector but no timelike vectors.
c). If Λ := q−1(0)−{0} the null cone, where q(v) := g(v, v) the quadratic form of the scalar product, then
W ∩ Λ = L− {0} where L is a one-dimensional submanifold.

We define, now, T := {timelike vectors of V }. We call the set C(u) := {v ∈ T : ⟨v, w⟩ < 0} the timecone
of u ∈ V. Both of these sets are open! We can, also, define C ′(u) := {v ∈ T : ⟨v, w⟩ > 0} = C(−u).
Two timelike vectors can not be orthogonal and thus for two timelike vectors v and u either v ∈ C(u) or
v ∈ C(−u).

Lemma 2.21. If v, w ∈ T live in the same timecone if and only if ⟨v, w⟩ < 0. Timecones are convex and
open sets. Also, for timelike vectors the inverse Cauchy-Schwartz inequality, i.e. |⟨v, w⟩| ≥ ∥v∥ · ∥w∥. If,
moreover, they live in the same timecone then the inverse triangle inequality holds, i.e. ∥v+w∥ ≥ ∥v∥+∥w∥.

By picking a timecone, in the vector space V , we set, what we call, a time-orientation for V .

Definition 2.13. If (M, g) is a Lorentz manifold then we say it is time-orientable with time-orientation

τ :M →
⋃
p∈M

{time-orientations on TpM} such that for every point p ∈M , τp ∈ {time-orientations on TpM}

and there exists a neighborhood Up of p and a local vector field X ∈ X(Up) such that Xq ∈ τq, for all q ∈ Up.

In a sense, time-orientation of a manifold is a ”continuous” choice of timecones on each tangent space.
The local vector field of the definition is obviously timelike.

Theorem 2.22. M is time-orientable if and only if there exists a global timelike vector field X ∈ X(M).

12



The only if part is obvious. Just choose the timecone generated by Xp ∈ TpM . For the converse, the
method is very commonly-used in such constructions. For any p ∈M there exists a neighborhood Up and
a XUp local timelike vector field at Up. The set {Up}p∈M is an open covering of M and thus there exists
a partition of unity ψp subordinated to this cover. Set

Z :=
∑
p∈M

ψpX
Up .

Then, Z ∈ X(M) and g(Z,Z) =
∑

p, q∈M
ψpψqg(X

Up , XUq ). But from Lemma 2.21 since XUp , XUq live

in the same timecone (on the intersection Up ∩ Uq) we get g(XUp , XUq ) < 0. Since a partition of unity
constitutes of non-negative functions we get Z is timelike.

Now if (M, g) is a Riemannian manifold admitting a unit vector field U then by setting
g̃ := g − 2(U∗ ⊗ U∗) (where U∗ is the dual form of the vector field U) we get that (M, g̃) is a Lorentzian
manifold. With some tools from algebraic topology one can prove the following beautiful characterization8:

Theorem 2.23. If M is a smooth manifold then the following are equivalent:
a). M admits a Lorentz metric.
b). M admits a time-orientable metric.
c). There exists a non-vanishing vector field on M .
d). M is either non-compact or compact with its Euler characteristic zero, i.e. χ(M) = 0.

An example where a Lorentzian metric is not possible is for M := S2n (the 2n−sphere). It is a known fact
from algebraic topology that in a sphere of even dimension every vector field vanishes at some point9.

We say a curve γ : I → M is spacelike if γ̇ is everywhere spacelike, timelike if γ̇ is timelike and null
if γ̇ is everywhere null. We call γ a causal curve if it satisfies g(γ̇, γ̇) ≤ 0. A broken timelike curve is a
piecewise smooth curve that satisfies g(a′(t+i ), a

′(t−i )) < 0 at the points that it breaks, that is, it remains
in a single timecone at the breaking point.
We will use the next lemma to prove that in normal neighborhoods timelike curves maximize proper time,

that is the length functional L(γ) :=

ˆ b

a

√
−g(γ̇, γ̇) dt where γ : [a, b] →M is a timelike smooth curve.

Lemma 2.24. If b : [0, 1] → TpM is a (piecewise) smooth curve with b(0) = 0 and such that a := expp ◦ b
is timelike then b remains in a single timecone on (0, 1].

Before the theorem we define some auxiliary functions. Let q̃ : TpM → R be the quadratic form q̃(v) :=

gp(v, v) and q := q̃ ◦ (expp)−1. Let r :=
√
−q̃ and the position vector field P̃ : TpM → T (TpM) such that

P̃ (v) :=
∑
j

vj
∂

∂vj

∣∣∣∣
v

where the global frame

{
∂

∂vj

}n
j=1

indicates the global frame of the tangent bundle

of TpM and is derived from the fact that every tangent vector on p ∈M can be written as v =
∑
j

vj∂j |p.

We, then, transfer this map to the manifold via the exponential map as P := (expp)∗,· ◦ P̃ .

Theorem 2.25. Let U be a normal neighborhood p ∈M . If there exists a timelike curve from p to q lying
entirely in U then the radial geodesic from p to a is, also, timelike and maximizes the length functional
acting on timelike curves 10 and any other timelike maximizer is a monotone parametrization of the radial
geodesic.

Proof. We follow (BO, p. 147). Indeed, let σ : p → q be a timelike curve lying entirely in U and let it
be defined on [0, 1]. Since b := (expp)

−1 ◦ σ is defined and, according to the lemma 2.24, since b(0) = 0

8A smooth manifold M always admits a Riemannian metric.
9Known as the hairy ball theorem.

10When the length functional acts on a timelike curve we call it the proper time of the curve and we denote it by τ .
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and σ is timelike, remains in the same timecone for all times. If γ : p → q is the radial geodesic from p
to q then σ(1) = γ(1) and σ(0) = γ(0). But γ(t) = expp(tv) where v = γ̇(0). Then v = exp−1

p (γ(t)) and
b(1) = exp−1

p (σ(1)) = exp−1
p (γ(1)) = v. But b(1) is timelike and thus v is timelike. From corollary 2.1 we

have that the radial geodesic γ is timelike. Let now Ut := P (b(t))/r(b(t)) which is a timelike, unit vector
field on the curve σ from Gauss lemma (lemma 2.16). Therefore, we can write σ′(t) = −g(σ′(t), Ut)Ut+Nt
where N ⊥ U a spacelike vector field. Then,

∥σ′∥2 = |g(σ′, U)|2 − g(N,N)

≤ |g(σ′, U)|2

which implies ∥σ′∥ ≤ −g(a′, U) since a′ and U live in the same timecone (again from Gauss Lemma).
Notice now

d(r ◦ b)
dt

=
d

dt

(√
−g(b, b)

)
=

1

r(b)
⟨b′, P̃ (b)⟩

= −g(a′, U)

where ⟨·, ·′⟩ implies the scalar product on T·(TpM) which is, in a sense, the metric at the point p. We
conclude

L(σ) ≤
ˆ 1

0

d(r ◦ b)
dt

dt = r(b(1)− r(b(0)) = r(v)− 0 = L(γ).

Now if the above inequality becomes equality we must have σ′ = −g(σ′, U)U . That gives us σ′ =
(r ◦ b)′

r ◦ b
P (r(b)) which implies (expp)∗,b(b

′) =
(r ◦ b)′

r ◦ b
(expp)∗,b(P̃ (b)) which implies (since the exponential

map is a local diffeomorphism in the normal neighborhood it induces an isomorphism at the tangent

spaces) b′i =
(r ◦ b)′

r ◦ b
bi and so, bi = Ai r ◦ b where Ai is a constant. By setting t = 1 we get Ai = vi/∥vi∥

and so σ(t) = expp

(
r ◦ b
∥v∥

v

)
. Moreover, ∥σ′∥ = ∥(r ◦ b)′∥ > 0 and thus (r ◦ b)′ preserves its sign and

thus r ◦ b is monotone. We have proved that σ is a monotone parametrization of γ (see more: (BO, p.
147)).

A particular case of submanifolds, we are very much interested in, is the case of hypersurfaces (i.e. sub-
manifolds of codimension 1). The following lemma provides a condition so that a Pseudoriemannian
hypersurface (that is, if we restrict the metric to the hypersurface then it remains non-degenerate) is
orientable.

Theorem 2.26. If M ⊆ N is a Pseudoriemannian hypersurface of the orientable Pseudoriemannian
manifold N then it is orientable if and only if it admits a global, orthogonal and unit vector field X ∈ X(N),
that is, Xp ⊥ TpM for all p ∈M and ∥X∥ = 1.

Proof. See (BO, p. 189).

Before we proceed we mention one useful tool to do calculations locally. We want to prove that for any
point there always exists a local orthonormal frame in a neighborhood of the point. Indeed, take a normal
neighborhood of the point and at the tangent space of the space consider an orthonormal basis (that is
possible from theorem 2.8). Then, parallel transport this basis along all possible radial geodesics of the
neighborhood. Since parallel transport is an isometry we have that it creates a local frame. It is smooth
from ODE theory.

Definition 2.14. A top-form ω ∈ Ωdim(M)(M) in a Pseudoriemannian manifold M is called a volume
element if for every local orthonormal frame (E1, . . . , En) we have ω(E1, . . . , En) = ±1.

The following lemma asserts that, at least, locally we always have a volume element. The global case
requires one more condition.
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Lemma 2.27. For every chart (U,φ) there exists a (local) volume element ω ∈ Ωdim(M)(M) and is given
by the formula ω(U,φ) := |det(gij)|1/2 dx1 ∧ · · · ∧ dxn.

Recall now that if a manifold is orientable then it admits an oriented atlas, that is that for any two charts
that have no trivial intersection, the Jacobian of the transition map has positive determinant. But then
for the local volume elements it holds:

ω(U,φ) =
| det(gij)|1/2

| det(g̃ij)|1/2
∂(x1, . . . , xn)

∂(y1, . . . , yn)
ω(V,ψ)

and the scalar on the RHS is positive we have that they agree on every local orthonormal frame. But
forms are C∞(M)−multilinear and thus they agree everywhere. Thus, we can define ω ∈ Ωdim(M)(M) as
ω|U := ω(U,φ) and it is a global volume element. Conversely, every global volume element is apparently
non-vanishing and thus an orientation form. We have proved the following result:

Theorem 2.28. The Pseudoriemannian manifold M admits a global volume element if and only if it is
orientable. The local representation of the volume element is ω|U = |det(gij)|1/2 dx1 ∧ · · · ∧ dxn. We shall
denote µg for the volume element from now on.

Proof. For the preceding, see (BO, p. 194).

For the following see (BO, p. 263) or (KA, p. 95).

Definition 2.15. A smooth function Γ : (−ε, ε) × [0, 1] → M is called a smooth variation of the smooth
curve γ : [0, 1] → M if Γ(0, t) = γ(t). We say that it fixes endpoints if Γ(s, 0) = γ(0) and Γ(s, 1) = γ(1).

We say it is by geodesics if for all s ∈ (−ε, ε), Γ(s, t) = Γs(t) is a geodesic, that is
D

dt

(
∂Γ

∂t

)
(s, t) = 0. The

variation field of the smooth variation Γ is the V ∈ X(γ) given by the formula Vt :=
∂Γ

∂s
(0, t). A Jacobi

field on the smooth curve γ, J ∈ X(γ), is one that solves the Jacobi equation:

D2J

dt2
+R(J, γ̇)γ̇ = 0.

Γ fixes endpoints if and only if the variation field vanishes at the endpoints11.

Lemma 2.29. Some useful computational formulas:
a). If Γ : A→M is smooth, where A ⊆ R2 is open, then:

D

dt

(
∂Γ

∂s

)
=
D

ds

(
∂Γ

∂t

)
.

b). However, the same does not hold for fields. If V ∈ X(Γ), i.e. V (s, t) ∈ TΓ(s,t)M then:

D

dt

(
DV

ds

)
− D

ds

(
DV

dt

)
= R

(
∂Γ

∂s
,
∂Γ

∂t

)
V

We turn our attention, now, to Jacobi fields.

Lemma 2.30. If Γ is a smooth variation by geodesics then the variation field of Γ is a Jacobi field.

This is a straight-forward computation using the lemma 2.29.
From ODE theory now we have the following proposition.

11If a field vanishes at endpoints then it is a variation field of some smooth variation fixing endpoints. Set Γ̃(s, t) :=
(exp)γ(t)(sVt).
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Proposition 2.4. For all v, w ∈ TpM , p = γ(0) there exists a unique Jacobi field such that J(0) = v,
DJ

dt
(0) = w. Equivalently, there exists a unique solution to the following initial value problem:


D2J

dt2
+R(J, γ̇)γ̇ = 0,

J(0) = v,
DJ

dt
(0) = w.

Lemma 2.31. If J is a Jacobi field with J(0) = 0 then it is a variation field of some smooth variation by
geodesics.

Jacobi fields play an important role in the study of conjugate points.

Definition 2.16. If γ(t) := expp(tv) is a geodesic, γ : [0, 1] → M with γ̇(0) = v then we call the point
q = γ(t0) a conjugate point of p = γ(0) along γ if and only if (expp)∗,t0v is not an isomorphism. We call
the, non-trivial, dimension of its kernel the multiplicity of the conjugate point q.

Theorem 2.32. The point q = γ(t0) is a conjugate point of p = γ(0) along γ if and only if there exists a
non-trivial Jacobi field J ̸= 0 along γ that satisfies J(0) = 0 and J(t0) = 0.

Corollary 2.3. If q = γ(t0) is not conjugate then for all v ∈ Tγ(0)M and all w ∈ Tγ(t0)M there exists a
unique Jacobi field along γ that satisfies J(0) = v and J(t0) = w.

This gives us the following very interesting corollary.

Corollary 2.4. a). If (M, g) is a Riemannian manifold with non-positive sectional curvature then there
are no conjugate points.
b). If (M, g) is a Lorentzian manifold with non-negative sectional curvature along timelike two-dimensional
planes then there are no conjugate points along timelike geodesics.

Proof. See (BO, p. 277).
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General Relativity

In this section we study some causality theory for 4-Lorentzian manifolds (spacetimes) and we conclude
with the main result, Hawking’s theorem.

Causality theory

Definition 3.1. A spacetime, (M, g), is a connected and orientable Lorentzian 4−manifold. We say it is
singular when it is not geodesically complete.

We define the future of a point p ∈M as:

I+(p) := {q ∈M | ∃ γ : p −→ q future-directed smooth timelike curve}.12

We define the causal future as:

J+(p) := {q ∈M | ∃ γ : p −→ q future-directed smooth causal curve.}

Similarly, I+(S) :=
⋃
p∈S

I+(p) and J+(S) :=
⋃
p∈S

J+(p). For the rest of this section we will extensively

use the fact that connecting two points with a broken-piecewise smooth timelike curve is equivalent to
connecting them with a smooth timelike curve. This is, in reality, an approximation theorem.

Lemma 3.1. If γ is a timelike piecewise smooth then arbitrarily close to γ there exists a smooth timelike
curve with the same causal character.

Proof. We follow (RP, p. 15). Let us assume it breaks at a point. We take a normal neighborhood at the
breaking point and send it through a diffeomorphism that includes the exponential map to the Minkowski
space to the curve (x, |x|, 0, 0). Then we can consider a smooth variation γs(t) that approximates this
curve such that it is smooth everywhere except at (0, 0) where it is discontinuous. Taking it back to our
manifold we have a variation Γ(s, t) smooth everywhere except at (0, t0) where it is not even continuous.
Recall that a piecewise smooth curve being timelike means g(γ̇(t−0 ), γ̇(t

+
0 )) < 0 where t0 is the breaking

point. For t ̸= t0 we have

g

(
∂Γ

∂t
(0, t),

∂Γ

∂t
(0, t)

)
< 0 =⇒ g

(
∂Γ

∂t
(s, t),

∂Γ

∂t
(s, t)

)
< 0, ∀ s < s0(t),

where the above holds for all small s by the definition of the limit. With the same arguement Γs remains
in the same timecone for all small s. Also because of the compactness of [0, 1] we can choose s < s0 where
s0 does not depend on t. It remains to prove it for t = t0. The compatibility condition g(γ̇(t−0 ), γ̇(t

+
0 )) < 0

asserts that the desired result is valid via the same arguement.

Lemma 3.2. If γ is a causal curve with Γ a smooth variation of γ and V its variation field then if

g

(
DV

dt
, ȧ

)
< 0 then Γs is timelike for all small s. The result remains true for piecewise smooth causal

curves.

Proof. We follow (BO, p. 294). We have:

∂

∂s

(
g

(
∂Γ

∂t
,
∂Γ

∂t

))
= g

(
D

ds

(
∂Γ

∂t

)
,
∂Γ

∂t

)
= g

(
D

dt

(
∂Γ

∂s

)
,
∂Γ

∂t

)
.

Then,

∂

∂s

(
g

(
∂Γ

∂t
,
∂Γ

∂t

))
(0) = g

(
DV

dt
, γ̇

)
< 0

12We denote by γ : p −→ q a curve that connects p with q and by γ : p
+−→ q to imply that the time-orientation is

future-directed.
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and ∂sg

(
∂Γ

∂t
,
∂Γ

∂t

)
(s) < 0 for all small s because of continuity. This asserts that Γs is timelike for all

small s since:

g

(
∂Γs
∂t

,
∂Γs
∂t

)
< g(γ̇, γ̇) ≤ 0

The following theorem will be used extensively from now on.

Theorem 3.3. If γ is a causal curve that is not a null (pre)geodesic 13 and connects p to q then we can
find arbitrarily close to γ a smooth timelike that connects p to q.

Proof. We follow (BO, p. 294). We begin with the case that γ̇(0) or γ̇(1) is timelike. Let’s take for example
that γ̇(1) is timelike. Since g(γ̇(1), γ̇(1)) < 0 by continuity there exists a δ > 0 such that g(γ̇(t), γ̇(t)) < −δ
for t ∈ [1 − δ, 1]. We consider W the parallel vector field on γ that is constructed by taking the parallel
transport of γ̇(1) along γ. Since W remains timelike and γ̇ is timelike then g(W, γ̇) has a constant sign
(since both of these fields are timelike) and thus by evaluating at t = 1 we have g(W, γ̇) < 0. We consider
a smooth f ∈ C∞([0, 1]) that vanishes on both ends and f ′ > 0 on [0, 1 − δ]. Consider now V := fW.

Then, g

(
DV

dt
, γ̇

)
= f ′g(W, γ̇) < 0 on [0, 1 − δ]. But then from lemma 3.2 (and the fact that the vector

field vanishes at both endpoints) we have that there exists a variation Γs(t) that fixes endpoints and is
timelike on [0, 1− δ] for all small s. Since [1− δ, 1] is compact and g(γ̇(t), γ̇(t)) < −δ on this interval we
have that Γs is timelike for all small s and all t ∈ [0, 1]. If the curve is timelike on (0, 1) then we can do
the same procedure on [0, t0] and [t0, 1] and then smoothly approximate by lemma 3.1.
If the curve is null, but not null geodesic, then g(γ̇, γ̇) = 0 and thus by differentiating we have γ̈ ⊥ γ̇
but in order for γ to not be a null pregeodesic we must have g(γ̈, γ̈) is not identically zero and thus be
spacelike at some t ∈ [0, 1] 14. The reason for this is that γ̈ is null everywhere if and only if γ̈ = fγ̇ for
some smooth function f. But that implies that γ can be parametrised to become a geodesic. We proceed
by considering a timelike parallel on γ vector field W such that g(γ̇,W ) < 0 15. Set h := g(γ̈, γ̈)/g(W, γ̇)

which is not identically zero and take φ a smooth function such that

ˆ 1

0

φhdx = −1. Consider then

f(x) :=

ˆ x

0

(φh+ 1) dt. We have f ′ = φh+ 1. Now consider V := fW + φγ̈. Then,

g

(
DV

dt
, γ̇

)
= f ′ g(W, γ̇)− φg(γ̈, γ̈)

= (f ′ − φh) · g(W, γ̇)
= g(W, γ̇) < 0.

If the null curve breaks at a point γ̇(t0) then consider ∆γ̇(t0) := γ̇(t+0 ) − γ̇(t−0 ) and parallel transport
along both paths. By an easy calculation (evaluating at t = t±0 ) we have g(W, γ̇(t)) > 0 for t ≥ t+0 and
g(W, γ̇(t)) < 0 for t ≤ t−0 . We, then, consider a piecewise smooth f such that f ′ > 0 on [0, t−0 ] and f

′ < 0
on [t+0 , 1] that vanishes on endpoints and set V := fW.

Corollary 3.1. Let S be a non-empty set. Then:
a). I+(p) is an open set and thus I+(S) is open.
b). If q ∈ J+(p)− I+(p) then every causal curve connecting the two points must be a null pregeodesic.
c). I+(I+(S)) = S.
d). J+(S) = I+(S)
e). Int(J+(S)) = I+(S) which implies ∂I+(S) = ∂J+(S).

13Pregeodesic, here, means that it can be parametrized to become a geodesic.
14Remember a timelike and a null vector cannot be perpendicular.
15For example, take v a timelike vector in the same timecone with γ̇(t) for some t and then parallel transport along the

curve.
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Proof. For a). if q ∈ I+(p) then there exists a future-directed timelike curve γ : p
+−→ q and we consider a

geodesically convex neighborhood of q, Uq. We consider a point r ∈ γ that lies between p and q such that
r ∈ Uq. Then we consider the positive-oriented timecone on TrM and we project it with the exponential
map to Vr ⊆ Uq and thus we have q ∈ Vr since there exists a timelike curve that connects r and q inside this
neighborhood (Theorem 2.25). Then if l ∈ Vr then we can find a future-directed timelike radial geodesic

that connects r to l. Then we have p
+−→ r

+−→ l and thus by smoothing out the broken future-directed
geodesic (lemma 3.1) we have l ∈ I+(p) and thus Vr ⊆ I+(p).
For b). if p −→ q with a causal non-null (pre)geodesic then from theorem 3.3 we have that the curve can
be approximated by a timelike curve of same orientation and thus q ∈ I−(p) which is a contradiction.
Thus the causal curve is indeed a null geodesic.

For c). if r ∈ I+(S) there exists a point a ∈ S and a future-directed timelike γ : a
+−→ r. We consider l ∈ γ

that lies between a and r and so we have γ : a
+−→ l

+−→ r and thus l ∈ I+(S) and r ∈ I+(l) ⊆ I+(I+(S)).

Conversely, r ∈ I+(I+(S)) there exists a l ∈ I+(S) with γ : l
+−→ r. But then there exists a s ∈ S and

a timelike δ : s
+−→ l. By concatenating δ and γ, δ ∗ γ, and smoothing it out, as in lemma 3.1, we get

s
+,timelike−→ r and so r ∈ I+(S).

At last we prove d). and leave the rest as an exercise. It’s immediate that I+(S) ⊆ J+(S) since I+(S) ⊆
J+(S). If, now, a ∈ J+(S) then for all open neighborhoods of a, Oa, we have Oa∩J+(S) ̸= ∅. Consider Oa
to be a convex neighborhood 16. Take a l ∈ Oa∩J+(S) and an r ∈ Oa such that l −→ r is a future-directed
timelike. But there exists a future-directed causal S ∋ s −→ l and thus the future-directed concatenated
curve s −→ l −→ r can be approximated by a future-directed timelike since the concatenation is not a null
geodesic and has a constant time-orientation (implication of theorem 3.3). Then r ∈ Oa ∩ I+(S) which
gives us the desired inclusion.

Corollary 3.2. If q ∈ J+(p) \ I+(p) then if λ : p
+−→ q causal then it must be a null pregeodesic.

Proof. We follow (RW, p. 191). If this was not the case then there would exist a timelike curve connecting
p to q which is a contradiction.

Definition 3.2. A set S ̸= ∅ is called achronal if I+(S) ∩ S = ∅ and so two points of an achronal set S
cannot be connected to one another by a timelike curve. We define the edge of the set S as the points of
S, let’s say q ∈ S, such that for all their open neighborhoods, Oq, there exist points p ∈ I+(q) ∩ Oq and
r ∈ I−(q) ∩ Oq and a timelike curve λ : p −→ r that remains in Oq but does not intersect S. A set with
empty edge is called edgeless.

Closed, achronal and edgeless sets are very interesting.

Theorem 3.4. If S is a closed, achronal and edgeless set then it is a C0−hypersurface (i.e. a topological
3-dimensional submanifold).

Proof. We follow (RP, p. 23). Consider q ∈ S and take a geodesically convex and precompact neighbor-
hood of this point, Uq, such that it satisfies the negation of the definition of edge and so that ∂t (in normal
coordinates) is timelike (which is, of course, possible since gq(∂t|q, ∂t|q) = −1 < 0 thus by continuity such
a neighborhood exists)17. Take now Vq ⊂⊂ Uq a precompact subneighborhood and we consider it such
that the normal chart at this neighborhood maps it diffeomorphically to the set{

(t, x, y, z) : |t| < ρ, x2 + y2 + z2 <
1

2
ρ2
}

where ρ << 2 is small enough such that the flow of ∂t is defined in the neighborhood Uq for time
t ∈ (−ρ, ρ). The (±ρ, x, y, z) are chronologically related by a timelike curve which is defined in the obvious
way. The integral curves of ∂t are of the form s 7→ (s, x, y, z) with (x, y, z) fixed and are obviously
timelike (since ∂t is) and remain in Vq. From now on such a timelike curve will be denoted by η(x,y,z).
Then without loss of generality (−ρ, x, y, z) ∈ I+(q) ∩ Uq while (ρ, x, y, z) ∈ I−(q) ∩ Uq by considering

16We can find arbitrarily small convex neighborhoods see (BO, p. 130)
17We consider the normal coordinates as (t, x, y, z).
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the timelike curve s 7→ (s(±ρ), sx, sy, sz). But these points belong in the integral curve η(x,y,z) which
lives inside the neighborhood Uq and negates the definition of edge. Since it connects to points from the
future and the past of q it must intersect S. The intersection happens at exactly one point since S is
achronal and since two different integral curves do not intersect one another we have that the mapping
(x, y, z) 7→ β(x, y, z) ∈ η(x,y,z) ∩ S is well-defined and injective. Therefore, an injection is induced from
B(0, 1/2ρ) ⊆ R3 to Uq∩S. The continuity is proved as follows: if β(x, y, z) and β(x+x0, y+y0, z+z0) have
a difference of times ∆t bigger than 2(x20 + y20 + z20)

1/2 then by considering t̃ = t+ 2(x20 + y20 + z20)
1/2 + ε

for ε > 0 we set
γ(s) := (t+ s(2(x20 + y20 + z20)

1/2 + ε), x+ sx0, y + sy0, z + sz0)

which is well-defined (it is inside the neighborhood because of convexity) and timelike. But then the two
points are chronologically related which is a contradiction due to achronality. Then ∆t ≤ 2(x20+y

2
0+z

2
0)

1/2

and thus the map is continuous. The homeomorphism is now obvious since if by π : R4 → R3 we denoted
he natural projection and φ the normal chart then

π|φ◦β(B(0,1/2ρ) ◦ φ ◦ β = idB(0,1/2ρ)

and thus the inverse of φ ◦ β is π|φ◦β(B(0,1/2ρ) which is apparently continuous.

Corollary 3.3. A chronological boundary S = ∂I+(C) of a set C is a closed, achronal and edgeless set
thus a C0−hypersurface.

Proof. We follow (RW, p. 192). A boundary is always closed so we proceed with the other two. First we
prove achronality. If q ∈ ∂I+(C) and take p ∈ I+(q) then q ∈ I−(p) and thus, since the past is open, there
exists an open neighborhood of q such that Oq ⊆ I−(p). But Oq ∩ I+(C) ̸= ∅ so take r ∈ Oq ∩ I+(C). We
have r ∈ I−(p) and so p ∈ I+(r) ⊆ I+(C). Thus I+(q) ⊆ I+(C) if q ∈ ∂I+(C). Also, if I−(q)∩ I+(C) ̸= ∅
then if r belongs in this set then there exists a timelike which is future-directed timelike from r to q. Also,
there exists a c ∈ C and a future-directed timelike from c to r. Thus there exists a future-directed timelike
from c to q and thus q ∈ I+(C). But this is a contradiction since I+(C) is open and therefore has a trivial
intersection with its boundary. Thus I−(q) ⊆ M − I+(C). If two q, r ∈ ∂I+(C) that can be connected
through a future-directed timelike curve exist then for example it holds that r ∈ I+(q) ⊆ I+(C) which
is a contradiction because r belongs in the boundary of the latter set. Thus the chronological boundary
is achronal. We, now, prove that it is edgeless. Let Oq an open neighborhood of q in the chronological
boundary, p ∈ I+(q) ∩ Oq, r ∈ I−(q) ∩ Oq and a timelike curve λ : p −→ r that remains in Oq. Then
it must intersect ∂I+(C) since λ(0) = p ∈ I+(q) ⊆ I+(C) and λ(1) = r ∈ I−(q) ⊆ M − I+(C). Thus
∂I+(C) can have no edge.

Definition 3.3. If γ : I(γ) → M , where I(γ) is an open interval of R, is a future-directed causal curve
then a p ∈M is called a future-endpoint of γ if for all of its open neighborhoods there exists a t0 ∈ I(γ) we
have that if t > t0 then γ(t) lives in this neighborhood. A past endpoint is defined similarly for past-directed
causal curves. A future/past-directed causal is called future/past-inextendible if it admits no future/past
endpoints. Finally, a continuous curve λ is called future-directed causal if for all of its points λ(τ) and all
Oλ(τ) open neighborhoods of λ(τ) we have that if t1 < t2 with λ(t1), λ(t2) ∈ Oλ(τ) then λ(t2) ∈ I+(λ(t1)).

Notice that if the curve admits a future-endpoint then we can extend it to the future by taking a normal
neighborhood and gluing it with a radial future-directed geodesic. Of course, we can not expect the
regularity to remain the same (but we will have a continuous extension).
Before diving into more theorems let us make a simple remark. Any causal curve will have a past/future
inextendbile extension. This is merely an application of Zorn’s lemma. If γ : I(γ) →M is a past-directed
causal curve then we consider the set:

A := {δ : I(δ) →M : I(δ) is open, δ is past-directed causal and extends γ}

and we make it a poset by considering δ1 ≤ δ2 ⇐⇒ δ2 extends δ1. If (δi : I(δi) → . . . )i∈I is a chain of A
then the curve δ : I(δ) →M such that I(δ) :=

⋃
i∈I

I(δi) and δ|I(δi) := δi is well defined and an upper-bound

of the chain. From Zorn’s lemma there must exist a maximal element of this set. This maximal element

20



ought to be an inextendible curve for otherwise we would be able to extend it a bit further (as mentioned
earlier) which is a contradiction...
We, only, mention the following technical lemma.

Lemma 3.5. If λ is a past-inextendible causal that passes through p ∈ M then for any q ∈ I+(p) there
exists γ ⊆ I+(λ) which is a past-inextendible timelike that passes through q.

Definition 3.4. A p ∈M is a limit point of the sequence (λn)
∞
n=1 if for all open neighborhoods of p, Up, if

there exist infinite n ∈ N such that λn ∩Up ̸= ∅. λ is a limit curve of (λn)
∞
n=1 if there exists a subsequence

for which the points of the curve λ are convergence points of this subsequence.

The following lemma is also very technical and belongs in the family of ”limit curve theorems”. See (EM)
for more.

Lemma 3.6 (Limit-curve theorem). If (λn)
∞
n=1 is a sequence of future-directed causal curves which admits

a limit point p ∈M then there exists a future-directed causal curve λ which passes through p and is a limit
curve of the sequence.

The regularity of the sequence is not inherited by the curve. Thus we consider the limit curve to be,
merely, continuous. A typical application of this lemma is theorems of the following form:

Theorem 3.7. If C is closed and p ∈ ∂I+(C) \ C then there exists a past-directed null geodesic segment
starting at p which is either past-inextendible or has an endpoint at C.

Proof. We follow (RW, p. 194). Since p ∈ ∂I+(C) \ C then there exists a sequence (qn)n ⊆ I+(C)

such that it converges to p. We consider cn ∈ C such that cn
+−→ qn or past-directed timelike curves

λn : qn
−−→ cn. We may assume qn /∈ C for all n, without loss of generality, since there can no exist

infinite n’s such that qn ∈ C (otherwise, since C is closed, p would live inside C). Then we consider the
manifold N :=M \C which inherits the Lorentz metric from M since C is closed (thus N is open). Then
λn become past-inextendible timelike curves in N with p being a limit point of theirs. From lemma 3.6
we have that there exists a causal λ which is past-inextendible in N and passes through p. Since λn are
past-directed timelike that end up in C we have that λn ⊆ I+(C) and so λ ⊆ I+(C). If we suppose that

λ intersects I+(C) then there exists a t > 0 and a c ∈ C such that c
+, timelike−→ λ(t)

+, causal−→ p and thus
p ∈ I+(C) ∩ ∂I+(C) which is impossible since I+(C) is an open set. Thus, in the past direction, we have
λ ∈ ∂I+(C). Now from the fact that ∂I+(C) is achronal (corollary 3.3) we have that λ may only be a null
geodesic. Now gluing back C, we will have that either it remains past-inextendible or it has an endpoint
on C.

One of the most popular concepts of physics in pop-culture is undeniably the notion of time-travel. Al-
though, it would be fun to travel back in time 18 such a concept would create paradoxes (the grandfather
paradox, for example). We would like to avoid pathological spacetimes where we can have timelike curves
that are, or tend to become 19, closed and so we will try to impose natural conditions on our spacetime
that prevents such anomalies.
For starters, we know, for sure, that our spacetime can not be compact.

Proposition 3.1. If (M, g) is a compact spacetime then it admits closed timelike curves.

Proof. We follow (BO, p. 407). Since for all p ∈ M , I+(p) is open, the set (I+(p))p∈M is an open cover.

Thus we have a finite subcover (I+(pi))
N
i=1 such that, without loss of generality, I+(p1) ̸⊆

N⋃
i=2

I+(pi).

Now if p1 /∈ I+(p1) (that is, we do not have a closed timelike curve around p1) we have that p1 ∈
N⋃
i=2

I+(pi) therefore there exists a j ∈ {2, . . . , N} such that p1 ∈ I+(pj). But then if q ∈ I+(p1) then

q ∈ I+(I+(pj)) = I+(pj), that is I+(p1) ⊆ I+(pj), a contradiction. We conclude p1 ∈ I+(p1) and so we
have a closed timelike curve around p1.

18Since, a travel forward in time is, in a sense, possible in special relativity (twin paradox).
19And so a small perturbation of the metric would create closed timelike curves.
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Definition 3.5. A spacetime (M, g) is called strongly-causal if for all p ∈M and Op open neighborhoods
of p there exists a Vp ⊆ Op such that every causal curve enters Vp at most once.

Of course in such a space a closed timelike would not be possible since this curve would have a periodic
extension to R making it possible to find neighborhoods that our curve enters infinitely many times. One
could argue that there is a risk of having a curve entering the above neighborhood once and then going
around and around the neighborhood, creating almost-closed curves. This is not possible due to the
following lemma:

Lemma 3.8. If K ⊆M is a compact subset of our spacetime and λ an inextendible causal curve that lies
entirely on K then it admits future and past endpoints.

Proof. We follow (RW, p. 197). Take any sequence ti → ∞ and set ai := λ(ti) ∈ K. Since K is compact
(ai)

∞
i=1 has an accumulation point in K. Call it p ∈ M . If p is not an endpoint of λ then there exists

an open neighborhood of p, Op, such that for a sequence tl → ∞ it holds that λ(tl) /∈ Op. But then this
neighborhood has a subneighborhood p ∈ Vp ⊆ Op such that λ can enter it at most once. But it is obvious
that λ enters and exits the neighborhood an infinite amount of times (since λ(tij ) → p and λ(tl) /∈ Vp).
This violates the strong-causality condition and therefore we have arrived at a contradiction.

A stronger causality condition is the stable causality of a spacetime. Geometrically, we consider a new
metric with bigger timecones and we expect no closed timelike curves to appear. In a sense, we allow more
curves to be considered timelike and thus we assert that we are safe from perturbing our metric to catch
timelike loops.

Definition 3.6. A spacetime (M, g) is called stably-causal if there exists a global timelike vector field
U ∈ X(M) such that the metric g̃ := g − U∗ ⊗ U∗ admits no closed timelike curves 20.

We make a few remarks before the characterization of stable-causality. Firstly, if X is a timelike vector
(field) for the metric g then the same goes for the modified metric g̃. Indeed,

g̃(X,X) = g(X,X)− g(U,X)g(U,X) = g(X,X)− g(U,X)2 < 0.

Moreover, if X, Y live in the same timecone in g then the same goes for g̃ (this is why we claim g̃ posseses
bigger timecones). Indeed,

g̃(X,Y ) = g(X,Y )− g(U,X)g(U, Y ) < 0, since g(U,X) and g(U, Y ) have the same sign.

Theorem 3.9. A spacetime (M, g) is stably-causal if and only if there exists a smooth function f ∈ C∞(M)
such that grad(f) is timelike.

Proof. We follow (RW, p. 198) for the one direction and (HE, p. 199) for the converse. If such a smooth
function exists then we set U := grad(f) and we find that the inverse of the metric has components

g̃ab = gab − 1

1− g(U,U)
UaUb.

20Where U∗ is the dual form of the field U , i.e. U∗ = g(U, ·).
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Since A :=
1

1− g(U,U)
> 0 and Ua =

∑
k

gka
∂f

∂xk
then if grad(f) is the induced g̃−gradient, we have:

g̃(grad(f), grad(f)) = grad(f)(f)

=
∑
a,b

g̃ab
∂f

∂xa

∂f

∂xb

=
∑
a,b

gab
∂f

∂xa

∂f

∂xb
−A

∑
a,b

UaUb
∂f

∂xa

∂f

∂xb

= g(grad(f), grad(f))−A
∑
a,b
k,l

gkaglb
∂f

∂xa

∂f

∂xb

∂f

∂xk

∂f

∂xl

= g(grad(f), grad(f))−A
∑
k,a

gka
∂f

∂xa

∂f

∂xk

∑
l,b

glb
∂f

∂xl

∂f

∂xb

= g(grad(f), grad(f)−Ag(grad(f), grad(f))2 < 0,

and so grad(f) is timelike in g̃ as well. If grad(f) is past-directed (if it is not then take −f as your
function) then we calculate

g̃(grad(f), grad(f)) = grad(f)(f)

= g(grad(f), grad(f)) < 0

and so grad(f) and grad(f) live in the same timecone. That means grad(f) is also past-directed. If γ is
future-directed causal curve we have g(grad(f), γ̇) = γ̇f = (f ◦γ)′ > 0 and thus f ◦γ is strictly increasing.
This prohibits γ from being a closed causal curve since we would have (f ◦γ)(τ1) = (f ◦γ)(τ2) for τ1 ̸= τ2.
For the converse, we introduce a new probability measure for M as follows: (we follow (HR, p. 114) for
this one).
We consider (Un, φn)

∞
n=1 a countable smooth oriented atlas and (ψn)n∈N a smooth partition of unity

subordinated to this atlas. Then we consider a Riemannian metric h and mi :=

ˆ
M

ψi µh where µh is the

volume element of (M,h). Set as ω the top-form ω :=

∞∑
n=1

1

mn2n
ψnµh. We define the linear functional

Λ : C∞
c (M) → R by the formula Λ(f) :=

ˆ
M

f ω. Riesz’s representation theorem asserts that there exists

a measure (M,M, µ) where M is a σ-algebra that contains the borel σ-algebra such that for all C∞
c (M) it

holds

ˆ
M

fω =

ˆ
fdµ. By setting pN :=

N∑
j=1

ψj we have that pj(x) → 1 for all x ∈M and it is increasing,

positive sequence. By Lebesgue’s monotone convergence theorem we have that

µ(M) =

ˆ
dµ = lim

j→∞

ˆ
pj dµ = 1.

Also, for all open sets U , µ(U) > 0. Indeed, consider V a precompact subset of U such that V ⊆ U and
consider a bump function ρ on V with support on U 21. Then,

µ(U) =

ˆ
U

dµ
0≤ρ≤1

≥
ˆ
U

ρ dµ =

ˆ
M

ρ dµ =

ˆ
M

ρω > 0.

Consider a ∈ [0, 3] and the family of metrics ga := g − a · U∗ ⊗ U∗. We then consider the function
θ(p, a) := I−(p, ga)

22. Our function θ has some nice properties and some bad properties. For example, it is
easy to see that our function is bounded and , for fixed a, it increases along future-directed causal curves

21This is possible due to the existence of partitions of unity.
22The past set of p with respect to the metric ga.
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(since if t1 < t2 then if p ∈ I−(γ(t1), ga) then p
+, timelike−→ γ(t1)

+, causal−→ γ(t2) and so p ∈ I−(γ(t2), ga) that
is I−(γ(t1), ga) ⊆ I−(γ(t2), ga) =⇒ θ(γ(t1), a) ≤ θ(γ(t2), a)). But it is not necessarily continuous. We
go around this by considering

θ̃(p) :=

ˆ 2

1

θ(p, a) da

which is continuous (see (HE, p. 200)) and preserves the nice properties of θ. We then smooth it out via
usual techniques from analysis (by considering mollifiers).

Corollary 3.4. Stable-causality implies strong-causality.

Proof. See (SM, p. 39).

Definition 3.7. The future domain of dependence of a closed and achronal set S is defined as

D+(S) := {q ∈M : every past inextendible causal curve passing through q intersects S}.

The past domain of dependence D−(S) is defined similarly.
A spacetime that satisfies D(Σ) := D+(Σ) ∪D−(Σ) = M for some closed and achronal Σ is said to be a
globally hyperbolic spacetime. Σ is called a Cauchy hypersurface of M .

It is easy to see that a Cauchy hypersurface must be also edgeless. If q ∈ Σ and we consider p ∈ I+(q),
r ∈ I−(q) and λ : p → r a timelike curve then this curve has an inextendible extension. Without loss of
generality, let λ be past-directed. Then λ cannot intersect Σ after it passes through r since then we would

have r
−−→ λ(t) ∈ Σ and r ∈ I−(Σ) thus λ(t) ∈ Σ ∩ I−(Σ) violating the achronality of Σ. Similarly, it

cannot intersect Σ before passing through p. Therefore the intersection happens in between the two points
thus Σ can have no edge. From theorem 3.4 we conclude :

Theorem 3.10. A Cauchy hypersurface is a closed, achronal and edgeless set such that every inextendible
curve intersects it. Therefore it is a C0−hypersurface of M .

It is, also, easy to see that I−(S) ∩D+(S) = ∅ for all closed and achronal sets S. The following theorem
characterizes the closure of D+(S).

Proposition 3.2. p ∈ D+(S) if and only if every past-inextendible timelike curve passing through p
intersects S.

Proof. We follow (RW, p. 202). Indeed if p ∈ D+(S) and there exists a past-inextendbile timelike λ
that passes through p and does not intersect S then it is certain that p /∈ S. Since S is closed we can
consider a geodesically convex neighborhood of p, U , such that U ⊆ M \ S. Consider, then, r ∈ λ ∩ U .
Then, p ∈ I+(r) ∩ U and so if we considered as Vp the projection (through the exponential map) of the
positively-oriented timecone in the tangent space of r (such that it remains inside I+(r) ∩ U) we would
have p ∈ Vp ⊆ I+(r) ∩ U and every other q ∈ Vp can be connexted to r via a radial geodesic (which will
be timelike because of proposition 2.25 and remain in U ⊆M \ S) and then be extended to infinity via λ.
By making a smooth approximation of this curve we conclude that Vp ∩D+(S) = ∅ which is impossible

since p ∈ D+(S).
Conversely, if every past-inextendible timelike intersects S then either p ∈ I+(S) or p ∈ S. If the latter
holds we are done. If p ∈ I+(S) then every neighborhood of p intersects I−(p) ∩ I+(S) since of Op is
open neighborhood of p then Op ∩ I+(S) is also an open neighborhood of p and every open neighborhood
of p intersects its past and future. We will show that I−(p) ∩ I+(S) ⊆ D+(S). If q ∈ I−(p) ∩ I+(S)
and there exists a past-inextendible causal from q that doesn’t intersect S then we consider γ ⊆ I+(λ) a
past-inextendible timelike that passes through p given by lemma 3.5. Since q ∈ I+(S), λ remains in I+(S)
for some time. If it remains there forever then γ ⊆ I+(S) and therefore it is not possible for γ to intersect
S because of the achronality of S. If λ leaves I+(S) then it should cross ∂I+(S) \ S (since it does not

intersect S). Let r ∈ ∂I+(S) \ S the point of intersection. We consider a timelike p
−−→ q

−, λ−→ r. The

segment p → q cannot intersect S because q ∈ I+(S) and S is achronal. The segment q
λ→ r, also, does

not intersect S by our hypothesis. We can approximate this concatenated curve, sufficiently close, with a
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smooth timelike p
−−→ r such that it does not intersect S. We then consider its inextendible (maximal)

extension. Since r ∈ ∂I+(S) an intersection with S is not possible since then we would have r ∈ I+(S)
which is a contradiction.

By definition, every inextendible causal curve, in a globally hyperbolic space, must intersect the Cauchy
hypersurface Σ at some point. The point need not be unique since our curve might be a null geodesic
which does not violate the achronality (see (BS, p. 3)). An inextendible timelike curve intersects Σ at
exactly one point, though. The following proposition asserts that an inextendible causal curve intersects
Σ and both I±(Σ).

Proposition 3.3. If Σ is a Cauchy hypersurface then every inextendible causal curve intersects Σ, I+(Σ)
and I−(Σ).

Proof. We follow (RW, p. 202). By definition they intersect Σ. Let λ be an inextendible causal curve
that does not intersect I−(Σ) then since M = Σ ∪ I+(Σ) ∪ I−(Σ) we have λ ⊆ Σ ∪ I+(Σ). Consider
γ ⊆ I+(λ) ⊆ I+(Σ) a past-inextendible timelike given by lemma 3.5. It is obvious that γ cannot intersect
Σ in the past and thus it must intersect it in the future. If by γ−1 we denote the time-reversal curve of γ

then γ−1 : γ(t)
+−→ σ ∈ Σ where t > 0 (that is γ(t) ∈ I−(γ(0))). Then, σ ∈ Σ ∩ I+(I+(Σ)) = Σ ∩ I+(Σ)

which is impossible. We have constructed an inextendible timelike curve that does not intersect Σ and
thus arrived at a contradiction.

We strengthen the above proposition into a characterization of Σ with the following definition and propo-
sition.

Definition 3.8. We define the future Cauchy horizon of the closed and achronal set S as

H+(S) := D+(S) \ I−(D+(S)).

It is immediate that I−(H+(S)) ∩H+(S) = ∅ and thus H+(S) is achronal.

Proposition 3.4. If p ∈ H+(S)\edge(S) then p lies on a null geodesic segment contained on H+(S) which
is either a part of a past-inextendible null geodesic that lies entirely on H+(S) or reaches a past-endpoint
at the edge of S.

Proof. See (EM, p. ).

It can be proved that H(S) := H+(S) ∪ H−(S) = ∂D(S). It follows (since we consider our spacetimes
to be connected) that a closed and achronal set Σ ̸= ∅ is a Cauchy hypersurface if and only if H(Σ) = ∅.
Indeed, H(Σ) = ∅ if and only if D(Σ) is clopen which is if and only if D(Σ) = M (since Σ ⊆ D(Σ) and
Σ ̸= ∅ thus D(Σ) is not empty). A more interesting characterization that strengthens proposition 3.3.

Theorem 3.11. If Σ ̸= ∅ is closed, achronal and edgeless then it is a Cauchy hypersurface if and only if
every inextendible null geodesic intersects Σ, I+(Σ) and I−(Σ).

Proof. We follow (RW, p. 205). If H+(Σ) ̸= ∅ and p ∈ H+(Σ) then since Σ is edgeless there exists a past-
inextendible null geodesic that lies entirely on H+(Σ) and starts at p. Since Σ ⊆ D+(Σ) the null geodesic
λ does not intersect I−(Σ) in the past. Therefore, it must intersect it in the future. But p ∈ I+(Σ) ∪ Σ
and if λ(t′) ∈ I−(Σ) for t′ < 0 then there exists a σ ∈ Σ such that σ ∈ I+(λ(t′)). But, λ(t′) ∈ J+(p) and

thus p
+, causal−→ λ(t′)

+,timelike−→ σ thus σ ∈ I+(Σ) which violates the achronality of Σ. We have arrived at a
contradiction. The case H−(Σ) ̸= ∅ is treated similarly.

Globally hyperbolic spacetimes exhibit great causal behaviour.

Theorem 3.12. Globally hyperbolic implies strongly causal.

Proof. See (RW, p. 205).
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Our final goal is to prove that globally hyperbolic actually implies stably causal. To do so, we follow
(RW, p. 206) and we define C(p, q) the set of all future-directed causal curves from p to q modulo
reparametrizations. We endow it with the unique topology having the sets O(U), U ⊆ M open, as its
basis where O(U) := {λ ∈ C(p, q) : λ ⊆ U}. It can be proved that in strongly causal spaces the convergence

in C(p, q), say λn
C(p,q)−→ λ, is equivalent to λ being a convergent curve of λn.

Theorem 3.13. If (M, g) is globally hyperbolic then C(p, q) is a compact, Hausdorff and second-countable
topological space.

Proof. See (RW, p. 206).

Corollary 3.5. If (M, g) is globally hyperbolic and p, q ∈ M then J+(p) ∩ J−(q) is compact. It follows
that J+(x) is closed for any x ∈M .

Proof. We follow (RW, p. 207). Take (rn)
∞
n=1 ⊆ J+(p) ∩ J−(q). There exist λn : p → q future directed

causal that pass through rn and thus λn ∈ C(p, q). Since C(p, q) is compact there exists a λ ∈ C(p, q)
which is a limit of some subsequence of λn. Replace the subsequence with λn. If U is any precompact set
containing λ then there exists a n0 such that for n ≥ n0 it holds λn ⊆ U and therefore rn ∈ U ⊆ U and U
is compact 23. But then there exists a subsequence rnk

such that it converges to some r ∈ U . It follows
that if V is a precompact set containing λ then V contains r. If r /∈ λ then there exist Or for r and Wλ

for λ disjoint open sets such that r ∈ Or and λ ⊆Wλ. Take Vλ precompact such that λ ⊆ Vλ ⊂ Vλ ⊂Wλ.
Then from the previous arguements we have r ∈ Vλ which is a contradiction. Thus r ∈ λ and therefore
r ∈ J+(p) ∩ J−(q) which asserts that it is a compact set. We leave as an exercise the claim that J+(x) is
implied closed from the fact that J+(p) ∩ J−(q) is compact (thus closed).

Theorem 3.14. Let (M, g) be a globally hyperbolic spacetime with a Cauchy hypersurface Σ and X be the
time-orientation global vector field. We consider r :M → Σ such that r(x) ∈ Σ is the unique intersection
point of the integral curve passing through x ∈ M with the Cauchy hypersurface Σ. The function r
is continuous, onto with r|Σ = idΣ and thus a retraction. It follows that any Cauchy hypersurface is
connected and any two Cauchy hypersurfaces are homeomorphic.

Proof. We follow (BO, p. 417). Let ψ : D → M be the flow of X. Recall that D is an open subset of
R×M and since Σ is a C0−hypersurface it follows that the set D(Σ) := (Σ×R)∩D is a C0−hypersurface
of D. The restriction ψ|D(Σ) : D(Σ) → M is a continuous bijection since if x ∈ M then the maximal
integral curve passing through x must be an inextendible timelike curve (because otherwise by considering
the limit we could extend it a little furter thus violating maximality) and thus it intersects Σ. This proves
that ψ|D(Σ) is onto. It is also one-to-one since if ψ(t, x) = ψ(t′, x′) for x, x′ ∈ Σ then since two different
integral curves cannot intersect we have x′ = ψ(s, x). But ψx(s) is timelike and thus in order not to
violate the achronality of Σ it follows that s = 0 and x′ = x. Then, ψ(t, x) = ψ(t′, x) and if t ̸= t′ then
we would have a closed timelike curve which is impossible in strongly causal (thus in globally hyperbolic)
spaces. By the invariance of domain theorem, ψ|D(Σ) is a homeomorphism since dim(D(Σ)) = dim(M).
For x ∈ M there exists a unique (t, y) ∈ R × Σ such that x = ψ(t, y). Then, r(x) = r(ψ(t, y)) = y which
implies that if πΣ : R × Σ → Σ is the natural projection to Σ then r ◦ ψ|D(Σ) = πΣ and so since ψ|D(Σ)

is a homeomorphism it follows that r = πΣ ◦ ψ|−1
D(Σ) which proves that r is continuous, onto and since

r(y) = r(ψ(0, y)) = y for y ∈ Σ it is also a retraction.
Now two Cauchy hypersurfaces Σ1, Σ2 are homeomorphic since we can consider rΣ1 : M → Σ1 and
rΣ2

: M → Σ2 and take their restrictions rΣ1
|Σ2

: Σ2 → Σ1 and rΣ2
|Σ1

: Σ1 → Σ2 which will be inverse
maps.

Of course, if the two Cauchy hypersurfaces are smooth hypersurfaces of M then the above proof asserts
that they are diffeomorphic.
We conclude this section with a huge theorem first proved by Geroch in 1970.

23Such a precompact set always exists since λ is compact. A manifold is locally compact and thus the construction of such
a set is immediate.
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Theorem 3.15 (Geroch). Globally hyperbolic implies stably causal. Moreover, if (M, g) is globally hyper-
bolic then there exists a continuous time function τ :M → R which is onto and if γ : (T−, T+) →M is an
inextendible causal curve then lim

t→T±
τ ◦ γ = ∓∞ with the sign to be minus if the curve is past-directed and

plus if it is future-directed. Finally, every level set of τ , say τ−1(c), is a Cauchy hypersurface and thus M
is foliated by Cauchy hypersurfaces. By considering the map M ∋ x 7→ (τ(x), r(x)) ∈ R × Σ, where r is
the map constructed in theorem 3.14, we have that M is homeomorphic to R× Σ.

Proof. We follow (RW, p. 209). For the last part see (BS, p. 4). We consider the measure mentioned
in the proof of theorem 3.9 such that µ(M) = 1. Then we consider the function f−(p) := µ(J−(p)). It
can be proved that f− is continuous and as we have seen it increases along future-directed causal curves.
By smoothing it out we get a smooth f̃− which has past-directed timelike gradient. This proves stable
causality. Returning now to f− we prove that it goes to zero over past-directed inextendible causal curves.
Indeed, if γ is past-directed inextendible causal and f− ◦γ does not go to zero then there exists a sequence
ti → ∞ and an ε > 0 such that µ(J−(γ(ti))) ≥ ε. It is immediate that lim sup

i→∞
µ(J−(γ(ti))) > 0 and

so µ(lim sup
i→∞

J−(γ(ti))) > 0 since the measure is finite and thus lim sup
i→∞

J−(γ(ti)) ̸= ∅. Therefore, there

exists an r ∈ J−(γ(t)) for infinite and thus for all t. If γ(0) = q this implies γ(t) ∈ J+(r) ∩ J−(q) which
is compact and thus γ must have a past-endpoint in this set, by lemma 3.8, a contradiction. Similarly,
if we consider f+(p) := µ(J+(p)) then it goes to zero along future-directed inextendible causal curve.
The function f− increases along future-directed causal curves and so f−/f+ goes to infinity along future-
directed inextendible causal curves and to zero along past-directed inextendible causal curves. The desired
time function is τ := log(f−/f+). Its level sets are closed and two p, q ∈ τ−1(c) cannot be connected
through a causal curve since τ ◦ γ increases over future-directed causal curves. That is, the level sets are
achronal. From the fact that τ ◦γ → ±∞ for any causal curve it is immediate that its level sets are Cauchy
hypersurfaces.

The existence of smooth spacelike Cauchy hypersurfaces and smooth time function τ : M → R were
rigorously proved by Bernal and Sanchez in (BS).
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Main result

In this subsection we prove the main theorem. We follow (GN) and (AC).

As we discussed earlier, a geodesically incomplete spacetime is said to be singular. Stephen Hawking
found some very natural conditions so that the spacetime admits incomplete future-directed timelike
geodesics. Before we state the theorem we explain what the strong energy condition is.

Definition 3.9. We say that our spacetime (M, g) satisfies the strong energy condition when for all
timelike vector fields X ∈ X(M) the Ricci tensor satisfies Ric(X,X) ≥ 0.

Although this could be considered a curvature condition we notice that if the metric g solves the Einstein
equationsRic = 8πT where T is the reduced stress-energy tensor then it is equivalent to say that T (X,X) ≥
0 for all timelike vector fields X ∈ X(M). Of course, the strong energy condition is trivially satisfied in
vacuum, i.e. Ric(g) = 0.

Theorem 3.16 (Hawking). If (M, g) is a globally hyperbolic spacetime with a spacelike Cauchy hyper-
surface Σ satisfying the strong energy condition and such that the mean curvature of Σ, say H, satisfies
either H ≤ H0 < 0 or H ≥ H0 > 0 then (M, g) is singular.

Perhaps, the only condition that we should be cautious about is the mean curvature condition on the
grounds that it may be too strict to be realistic. As we will see, the mean curvature is proportional to
the derivative with respect to time (on some suitable coordinate system) of the logarithm of the volume
element of Σ. Now, if our universe came into being from a Big Bang then this condition is natural since,
in an early stage after the explosion, our universe would expand with a great acceleration and thus its
volume would get bigger and bigger.

Let (M, g) be a globally hyperbolic spacetime with a smooth spacelike and orientable Cauchy hypersur-
face Σ and a smooth time function t : M → R. There exists, then, a unit normal vector field N to Σ
and we consider an open set U ⊆ R × Σ such that {0} × Σ ⊆ U . We consider a modification of the
exponential map (which we will, also, denote by exp), exp : U → M such that exp(t, x) := γx(t) where
γx is the (x,Nx)−timelike geodesic 24. If we identify the tangent space of U with TtR × TxΣ then it is
obvious that for (0, x) ∈ U the modified exponential map induces a diffeomorphism in a neighborhood
of the point since its differential exp∗, (0,x) maps ∂t to Nx and ∂xi

∈ TxΣ to ∂xi
∈ TxM (by consider-

ing some local slice chart on Σ). A critical point of the exponential map (that is, a point where exp(·, x)
ceases to be a diffeomorphism in some neighborhood of (·, x)) will be called a conjugate point of x along γx.

Suppose, now, that the point q = exp(t0, x) is not conjugate to x along γx and for all 0 ≤ t ≤ t0
the curve γx does not admit conjugate points. We can, then, cover γx|[0,t0] with finite neighborhoods such
that exp is a diffeomorphism there or equivalently that it is a local diffeomorphism in the union of these
neighborhoods. By considering a local slice chart on x0 ∈ Σ, say (V ∩Σ, φ), we have that a local chart of
the form (t, x1, x2, x3) = (id× φ) ◦ exp−1(y) is induced in each of these neighborhoods. Also, t and xi for
i = 1, 2, 3 can be defined in the union of these neighborhoods by the gluing lemma (for example, consider
t|Vi

:= πR ◦ (id×φ) ◦ exp−1 |exp(Vi) where Vi is one of these neighborhoods
25). Set as V the union of these

neighborhoods. Then,
∂t|exp(t,x) = ∂t|(t,x)(· ◦ exp) = γ̇x(t)

and so g00 = g(∂t, ∂t) = −1 on V and also

∂g0i
∂t

= g(∇t∂t, ∂xi) + g(∂t,∇t∂xi)

= 0 + g(∂t,∇i∂t)

= ∂xi(g00)

= 0.
24The timelike geodesic with initial conditions (x,Nx).
25It shouldn’t be confused with the time function.
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Since g0i|Σ = 0 we have g0i = 0 on V . It follows that g = −dt2 + g̃ where g̃ =

3∑
i,j=1

gij dxi⊗ dxj . It follows

that g̃ is a Riemmanian metric on Σ since Σ is spacelike. We proved the following useful lemma:

Lemma 3.17. If γx0
admits no conjugate points for 0 ≤ t ≤ t0 then for some neighborhood of γx0

|[0,t0]
the metric takes the form g = −dt2 + g̃ where g̃ is some spatial metric such that g̃|Σ is positive-definite.

Proof. See (AC, p. 12).

The Christoffel symbols read:
Γl00 = 0, for l = 0, 1, 2, 3

and

Γi0j =
1

2

3∑
k=1

g̃ik
∂g̃jk
∂t

.

It follows that

R00 = Ric(∂t, ∂t) = −∂θ
∂t

−
3∑

i,j,k,l=1

g̃ikg̃jlbjkbil

for bij =
1

2

∂(g̃ij)

∂t
and θ =

3∑
i,j=1

g̃ijbij .

Notice that

θ =
1

2

3∑
i,j=1

g̃ij
∂g̃ij
∂t

=
1

2
tr((g̃ij)(∂t(g̃ij)))

=
1

2
∂t(log(det(g̃)))

= ∂t(log(
√
det(g̃))).

Now we will prove that θ is in fact the mean curvature of Σ (modulo a sign). Recall that the mean
curvature of a hypersurface is the trace of its shape operator, where its shape operator is defined as the
unique, symmetric linear operator S : X(Σ) → X(Σ) such that

g(S(X), Y ) = g(II(X,Y ), N)

where N is the normal vector field on Σ and II(X,Y ) := (∇XY )⊥ the second fundamental form (see (BO,
p. 107)). Since N = ∂t in the coordinates we defined above, we compute

g(S(∂xi
), ∂xj

) = g(∇i∂xj
, ∂t)

= −g(∇i∂t, ∂xj
)

= −g(∇t∂xi, ∂xj
)

= −∂g̃ij
∂t

+ g(∂xi ,∇t∂xj )

= −∂g̃ij
∂t

− g(S(∂xj ), ∂xi)

= −1

2

∂g̃ij
∂t

.

Since H = tr(S) we conclude H = −1

2

3∑
i,j=1

gij
∂gij
∂t

= −θ.

We now make the first steps towards the proof of our main theorem.
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Lemma 3.18. Let (M, g) be a globally hyperbolic spacetime with a spacelike Cauchy hypersurface Σ,
satisfying the strong energy condition and suppose that there exists a point x ∈ Σ such that θ(0, x) = θ0 < 0.
Then the orthogonal (to Σ) timelike geodesic γx admits a conjugate point for time T ≤ −3/θ0.

Proof. We follow (GN, p. 301). Suppose that γx admits no conjugate points for t ≤ −3/θ0 and that it
can be extended that far. Then the coordinate system we established above is well-defined for all times
0 ≤ t ≤ −3/θ0. The strong energy condition asserts that R00 ≥ 0 and so

∂θ

∂t
+

3∑
i,j,k,l=1

g̃ikg̃jlbjkbil ≤ 0.

Notice that
3∑

i,j,k,l=1

g̃ikg̃jlbjkbil =

3∑
i,j=1

aijaji = tr((aij)(aij)
T ) ≥ 1

3
tr(aij)

2

where aij =

3∑
k=1

g̃ikbkj and we used the inequality tr(AAT ) ≥ 1

n
tr(A)2 for A an n×n matrix. Notice that

tr(aij) = θ and so the inequality becomes

∂θ

∂t
+
θ2

3
≤ 0 =⇒ ∂θ

∂t
≤ −θ

2

3
≤ 0.

Thus, θ is decreasing along γx and by integrating the above inequality we have

−1

θ
+

1

θ0
+
t

3
≤ 0 =⇒ 1

θ0
+
t

3
≤ 1

θ
< 0,

since θ ≤ θ0 < 0 along γx. By sending t→ −3/θ0 we arrive at a contradiction since the coordinate system
should be well defined there and we found that θ blows up while approaching this value.

Lemma 3.19. Let (M, g) be a globally hyperbolic spacetime with a spacelike Cauchy hypersurface Σ and
γ a timelike geodesic that intersects Σ orthogonally, connects Σ with p ∈M and admits a conjugate point
q before reaching p. Then γ does not maximize proper time.

Proof. We follow (GN, p. 301). Since q is a conjugate point we can consider an orthogonal to Σ timelike
geodesic γ̃ that connects Σ with q and such that the proper time of γ̃, τ(γ̃), equals the proper time of
γ|[Σ→q], τ(γ|[Σ→q]). Consider a geodesically convex neighborhood of q, Uq, and take r ∈ γ̃ ∩ Uq and
s ∈ γ ∩ Uq. Consider the concatenation

δ := γ̃|[Σ→r] ∗ [r → s] ∗ γ|[s→p]

where [r → s] is the radial geodesic from r to s inside Uq. We claim τ(δ) > τ(γ). Indeed,

τ(γ|[Σ→q]) = τ(γ̃) = τ(γ̃|[Σ→r]) + τ(γ̃|[r→q])

and so

τ(δ) = τ(γ̃|[Σ→r]) + τ([r → s]) + τ(γ|[s→p])

> τ(γ̃|[Σ→r]) + τ(γ̃|[r→q]) + τ(γ|[q→s]) + τ(γ|[s→p])

= τ(γ̃) + τ(γ|[q→p])

= τ(γ).

The curve δ is a piecewise smooth timelike curve with τ(δ) > τ(γ). We can, then, smooth it out to find a
smooth timelike curve with this property.
In a more rigorous manner, if q is a conjugate point along γ : [0, a] →M (set q = γ(t0)) then we consider a
non-trivial Jacobi field Ỹ such that Ỹ (0) = 0 and Ỹ (t0) = 0 (and thus it is orthogonal to γ). Next, consider
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as Y the vector field that coincides with Ỹ between Σ ∋ γ(0) and q and vanishes from q to p. We, also,
consider the parallel (to γ) vector field Z̃ given by the initial condition Z̃(t0) = −∇γ̇(t0)Ỹ (t0) = −Dt(Ỹ )(t0)

(and thus necessarily spacelike) and Z := θZ̃ where θ is a smooth function that vanishes at endpoints and
θ(t0) = 1. Finally, set Yε := Y + εZ and consider Γε to be the smooth variation of the curve γ with
variation field Yε. By considering the proper-time functional

τΓε
(s) :=

ˆ a

0

√
−g(∂t(Γε,s), ∂t(Γε,s)) dt

one can prove (see for example (KA, p. 99)) that

τ ′′Γε
(0) = −

ˆ a

0

(
g(Dt(Yε), Dt(Yε)) +Rm(γ̇, Yε, γ̇, Yε)

)
dt = I(Yε, Yε).

We call the bilinear form I(V,W ) := −
ˆ a

0

(
g(DtV,DtW ) + Rm(γ̇, V, γ̇,W )

)
dt the index form and it is

clearly symmetric. Therefore,

τ ′′Γε
(0) = I(Y, Y ) + 2εI(Y,Z) + ε2I(Z,Z)

and since Y is a Jacobi field (see definition 2.15) between Σ and q and zero elsewhere, we get I(Y, Y ) = 0.
Moreover,

I(Y, Z) = −
ˆ t0

0

(
g(Dt(Y ), Dt(Z)) + g(R(γ̇, Y )γ̇, Z)

)
dt

= −g(Dt(Y ), Z)

∣∣∣∣t0
0

+

ˆ t0

0

(
g(D2

t (Y ), Z) + g(R(Y, γ̇)γ̇, Z)

)
dt

= g(Dt(Ỹ )(t0)), Dt(Ỹ )(t0)) > 0,

where the integral vanishes since Y is a Jacobi field for t ∈ [0, t0]. This asserts that for sufficiently small
ε > 0 we can make τ ′′Γε

(0) > 0 which means that γ can not maximize proper time for otherwise the second
variation would be non-positive at t = 0 for all ε > 0 (since the functional with this variation would attain
a maximum for t = 0). For the complete details see (JN, p. 71).

Lemma 3.20. Let (M, g) be a globally hyperbolic spacetime with a spacelike Cauchy hypersurface Σ and
p ∈ D+(Σ). Then, D+(Σ) ∩ J−(p) is compact.

Proof. See (GN, p. 302).

Lemma 3.21. Let (M, g) be a globally hyperbolic spacetime with a spacelike Cauchy hypersurface Σ and
p ∈ D+(Σ). Then, there exists a timelike geodesic γ from Σ to p which intersects Σ orthogonally and
maximizes proper time among all timelike curves from Σ to p.

Proof. We follow (GN, p. 304). Set A := D+(Σ) ∩ J−(p) (which is compact) and C(A) the compact
subsets of A. Also, set T (Σ, p) the timelike curves from Σ to p which is a subset of C(A). Consider any
distance metric d on M and the Hausdorff metric dH on C(A) defined by the formula

dH(K,L) := inf{ε > 0| K ⊆ B(L, ε), L ⊆ B(K, ε)}.

It can be proved that (C(A), dH) is a compact metric space. Consider τ : T (Σ, p) → R the proper time
functional

τ(γ) :=

ˆ t(p)

0

∥γ̇∥ ds

where we have parametrised by the time-function t : M → R and R is endowed with the topology
T := {(−∞, a) : a ∈ R̄}. The functional τ is continuous with respect to the topology of C(A) and (R, T ).
We continuously extend it to C(Σ, p) := T (Σ, p), which is compact in C(A), by the formula

τ(δ) := lim
ε→0

sup{τ(γ)|γ ∈ Bε(δ) ∩ T (Σ, p)}.
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The set C(Σ, p) is the set of all continuous causal curves from Σ to p. The compact sets of (R, T ) attain
a maximum and so by continuity τ attains a maximum on a causal curve γ. Cover γ with a finite number
of geodesically convex neighborhoods Vi, i = 1, . . . , N and take p1, . . . , pN such that p1 = γ(0), pi and
pi+1 live in the same Vi and pN = p. Take, now, a sequence of timelike curves in T (Σ, p), say γn, that
converge, in C(A), to γ. Since the sets γn∩ t−1(t(pi)) are singletons (t, here, is the time function) consider
pi,n ∈ γn ∩ t−1(t(pi)). It is immediate that pi,n converge to pi since if Wi is a neighborhood of pi then
there exist Wγ(t) ⊆M \ t−1(t(pi)) since γ(t) /∈ t−1(t(pi)) because t ◦ γ is strictly monotone. Then since we

can cover γ by finite of these sets W1, . . . ,WK then for all large n we have γn ⊆
K⋃
i=1

Wi (since γn converge

to γ with respect to dH). It follows that pi,n ∈ γn ∩ t−1(t(pi)) ⊆ Wi ∩ t−1(t(pi)) and so pi,n ∈ Wi for
all large n. For all large n, consider δn to be the concatenation of the radial geodesics connecting pi,n to
pi+1,n inside Vi. It is obvious that τ(δn) ≥ τ(γn). Since pi,n converge to pi it follows that δn converge to
δ (the concatenation of radial geodesics connecting pi to pi+1 inside Vi). By sending n to infinity we get
τ(δ) ≥ τ(γ) and so τ(δ) = τ(γ). The curve δ is, in fact, a smooth timelike geodesic (and not piecewise
smooth) since if it was not smooth we could consider a geodesically convex neighborhood around the points
that it breaks and then consider a radial geodesic that would increase its length. Therefore, δ is a smooth
timelike geodesic. The following arguement asserts that it intersects Σ orthogonally (we follow (HE, p.
105) here):
Consider Γ : (−ε, ε) × [0, t(p)] → M a smooth variation of δ such that Γ(s, 0) is a smooth curve lying
entirely on Σ and Γ(s, t(p)) = p for all s ∈ (−ε, ε). Since δ maximizes proper time it follows that

τΓ(s) :=

ˆ t(p)

0

√
−g(∂tΓs, ∂tΓs) dt

attains a maximum for s = 0. Therefore, τ ′Γ(0) = 0. We compute

τ ′Γ(s) =

ˆ t(p)

0

−1√
−g(∂tΓs, ∂tΓs)

g(Ds(∂tΓs), ∂tΓs) dt

=

ˆ t(p)

0

−1√
−g(∂tΓs, ∂tΓs)

g(Dt(∂sΓs), ∂tΓs) dt

=

ˆ t(p)

0

−1√
−g(∂tΓs, ∂tΓs)

(
d

dt
g(∂sΓs, ∂tΓs)− g(∂sΓs, Dt(∂tΓs))

)
dt.

By integrating by parts and setting s = 0 (since Γ(·, t(p)) = p =constant) we get g(V0, δ̇(0)) = 0 where V
is the variation field of the smooth variation Γ. It follows that V0 is spacelike (since δ is timelike) and so
δ̇(0) is orthogonal to Σ since the curve Γ(s, ·) was a random path on Σ.

Theorem 3.22 (Hawking). Let (M, g) be a globally hyperbolic spacetime with a spacelike Cauchy hyper-
surface Σ satisfying the strong energy condition. Assume that the expansion of the mean curvature satisfies
θ ≤ θ0 < 0 on Σ. Then, (M, g) is singular.

Proof. We follow (GN, p. 307). We will prove that no future-directed timelike geodesic extends (to the
future) beyond the time −3/θ0. If this was not the case then there would exist a timelike geodesic with a
proper time parametrization such that it could be defined for τ0 = −3/θ0+ε for some ε > 0. Set p := γ(τ0).
Then, there exists an orthogonal to Σ timelike geodesic δ that reaches p and maximizes proper time among
all timelike curves from Σ to p (lemma 3.21). Therefore, τ(δ) ≥ −3/θ0+ε. Then, from lemma 3.18, δ must
admit a conjugate point which contradicts lemma 3.19 since δ maximizes proper time. Contradiction.

If the expansion θ satisfies θ ≥ θ0 > 0 then the result remains true but for past-directed timelike geodesics
(see (GN, p. 307)).

32



References

[KA] K. Athanasopoulos, ”An Introduction to Riemannian Geometry”, Course Notes, University of Crete,
2022.

[BS] A. N. Bernal, M. Sanchez, ”On smooth Cauchy hypersurfaces and Geroch’s splitting theorem”,
arXiv:gr-qc/0306108v2, 2003.

[AC] A. Chatzikaleas, ”Hawking’s Singularity Theorem”, Lecture Notes, 15th Panhellenic Geometry Con-
ference, University of Ioannina, 2022.

[GN] L. Godinho, J. Natario, ”Introduction to Riemannian Geometry and applications to Relativity and
Mechanincs”, Springer, Universitext, 2014.

[SH] S. W. Hawking, The occurrence of singularities in cosmology. iii. causality and singularities, Proc.
Roy. Soc. London Ser. A 300 (1967), no. 1461, 187–201.

[HE] S. W. Hawking, G. Ellis, ”The Large Scale Structure of Spacetime (Cambridge Monographs on
Mathematical Physics)”, Cambridge University Press, 1975.

[HP] S. W. Hawking, R. Penrose, ”The Nature of Space and Time”, Princeton University Press, 1996.

[JL] J. M. Lee, ”Introduction to Smooth Manifolds”, Springer, Graduate Texts in Mathematics, 2012.

[EM] E. Minguzzi, ”Lorentzian causality theory”, Living Rev Relativ 22, 3, 2019.

[SM] E. Minguzzi, M. Sanchez, ”The causal hierarchy of spacetimes”, arXiv:gr-qc/0609119v3, 2006.

[JN] J. Natario, ”Mathematical Relativity”, arXiv:2003.02855v1 [gr-qc] 5 Mar 2020.

[BO] B. O’ Neil, ”Semi-Riemannian Geometry, with Applications to Relativity”, Volume 103 (Pure and
Applied Mathematics), Academic Press, 1983.

[RP] R. Penrose, ”Techniques of Differential Topology in Relativity”, CBMS-NSF Regional Conference
Series in Applied Mathematics, 1972.

[HR] H. Ringstrom, ”The Cauchy Problem in General Relativity”, EMS, ESI Lectures in Mathematics
and Physics, 2009.

[LT] L. W. Tu, ”Introduction to Manifolds”, Springer, Universitext, 2011.

[RW] R. M. Wald, ”General Relativity”, University Of Chicago Press, First Edition, 1984.

33


	Introduction
	Preliminaries from differential geometry
	Smooth manifolds
	Pseudo-Riemannian geometry

	General Relativity
	Causality theory
	Main result


