Lecture 4. Continuous models

Literature
@ Rajaraman, Solitons and Instantons, Sec. 2 (North Holland, 1982)
e Manton, Sutcliffe, Topological Solitons, Sec. 5 (CUP, 2004)
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Lecture 4a. The wave equation with an additional linear term

The Klein-Gordon equation (a linear equation)
192 92 o
@w‘mﬁm6¢ﬂ'

c is the velocity of traveling waves.

Example

(a) Find traveling wave solutions of the wave equation and of the
Klein-Gordon equation. (b) Write the dispersion relation. (c) Write a
linear combination of the above as a solution of the equation.

Example

Write the Lagrangian for the Klein-Gordon equation. Notice that this is in
the following form, where the term U(gb) is called a potential,

c:% é@@?%@@2—uw>
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A nonlinear equation

A nonlinear model from the wave equation
19 0
( ¢ +m’?¢* = 0.

c2 8t2 8)(2

Lagrangian and Energy

e The energy is minimized for ¢(x,t) = 0 (note that it is positive
definite).

@ For localized solutions, an argument can be developed indicating that
d(x,t) = 0 as x — o0.
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Lecture 4b. A nonlinear wave equation

The ¢* model

We choose a more complicated potential

U(9) = A1 - ¢%)°

giving a Lagrangian
L= [ [3007 - 3007 - 20 - 7] o

Note that the additional term in the potential is essentially a ¢4 term.

The Euler equation is

9% 92
<at2 — 8X2) ¢ —4X(1 — P = 0.

Simple wave solutions do not seem possible.

Stavros Komineas Mathematical Modeling



Static solutions of the equation

Time-independent solutions are ¢ = ¢(x). Euler's equation

"+ 4AN1 — ¢ =0

Trivial static solutions of the (bJ‘ model

Trivial solutions are ¢ = const. and we can see that ¢ = +1 are
solutions of the equation.

Multiplying the Euler eqn by ¢’ makes it a total derivative

3 BW —A(1- W] = 0= J(6)? -~ A1~ ) =0

Note: we have set the integration constant to zero (why?).

A localized solution (kink)

¢(x) = £tanh <\/ﬁ(x — a)) , o :constant.
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More configurations
A kink at position o is
¢(x) = tanh (\/ﬁ(x — a))
An antikink at position o is

¢(x) = — tanh (\/ﬁ(x - a))

Kink-antikink

We can write a configuration which represents a kink at position o and

an antikink at position —a,
(x) = tanh (\/ﬁ(x . or)> ~ tanh (\/ﬁ(x + or)) Tl

This is valid as long as a is large.

But, this in not a solution of the static equation.
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Localized solutions

We may give a picture of the above method of integration in terms of

the motion of a Newtonian system for an effective energy function.

(@)= A1-9¢*)?=0 o =(¢)*-U(¢)=0.

Consider x as time and ¢ as position of a particle. The above is formally
the same as the law of energy conservation.
Note: the expression on the left is not the energy of a real particle.

-Uu(¢)

-2
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Traveling solitary waves

A traveling wave

The following form satisfies the equation

1
1—v2

B(x1) = tanh (VDy(x—w)), 7=

The above is obtained from the static solution by the transformation

X — vt

X = ——
1—v2

called the Lorentz transformation.
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Lecture 5c. The Sine-Gordon equation

The Sine-Gordon equation (only time-independent)

Lagrangian

Euler's equation

A solitary wave solution is

2n

o(x) =4 tan~! (7).

We have e
d(x = —0) =0
d(x = 00) = 2m.

[
-10
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Multi-kinks

Example
Construct the picture of a particle moving in a potential. Note that this
has extrema at ¢ = 0,7, 27, ... ..

We may construct multi-kink configurations for the sine-Gordon equation,

o(x) = 4tan ! <Slnh(x)> , o : const.

[eg

such as

2n

-2n

=15 15

>xo
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Lagrangian for two fields

Lagrangian for two fields

Consider two fields ¢1(x), p2(x) and the Lagrangian density

1 m? .
ﬁ = 58)((]5,- 8)((251' - 7¢i¢i7 = ]‘7 2

It is understood that we sum over i.

Derive the Euler-Lagrange equations.
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Complex fields

Lagrangian for a complex field

We define the complex field

= —(¢1 +ig)), & = %(m ~io)

S

the above Lagrangian density is written as
L=0,6" ¢ —m’p*p.
Derive the Euler-Lagrange equations for ¢ € C.

oL
50"

=0= 8¢ +m'¢p=0.
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Complex fields in many space dimensions

Lagrangian for a complex field in many dimensions

L =0,0" 0, — m*¢* .

where = 1,2,... is summed over its values.

Example

Write explicitly the Lagrangian in two space dimensions.

Derive the Euler-Lagrange equations.
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